
Optimizing Offer Sets in Sub-Linear Time

Vivek F. Farias1, Andrew A. Li2, Deeksha Sinha3, and Andrew Zheng4

1Sloan School of Management, Massachusetts Institute of Technology
2Tepper School of Business, Carnegie Mellon University

3Operations Research Center, Massachusetts Institute of Technology
3Operations Research Center, Massachusetts Institute of Technology

Abstract

Personalization and recommendations are now accepted as core competencies in just about

every online setting, ranging from media platforms to e-commerce to social networks. While

the challenge of estimating user preferences has garnered significant attention, the operational

problem of using such preferences to construct personalized offer sets to users is still a challenge,

particularly in modern settings where a massive number of items and a millisecond response

time requirement mean that even enumerating all of the items is impossible. Faced with such

settings, existing techniques are either (a) entirely heuristic with no principled justification, or

(b) theoretically sound, but simply too slow to work.

Thus motivated, we propose an algorithm for personalized offer set optimization that runs

in time sub-linear in the number of items while enjoying a uniform performance guarantee.

Our algorithm works for an extremely general class of problems and models of user choice that

includes the mixed multinomial logit model as a special case. We achieve a sub-linear runtime by

leveraging the dimensionality reduction from learning an accurate latent factor model, along with

existing sub-linear time approximate near neighbor algorithms. Our algorithm can be entirely

data-driven, relying on samples of the user, where a ‘sample’ refers to the user interaction data

typically collected by firms. We evaluate our approach on a massive content discovery dataset

from Outbrain that includes millions of advertisements. Results show that our implementation

indeed runs fast and with increased performance relative to existing fast heuristics.

Keywords: recommender systems; e-commerce; assortment optimization; sub-linear algorithms;

approximate nearest neighbors; locality-sensitive hashing; submodular maximization

1

1. Introduction

A common problem in modern web-services revolves around constructing personalized offer sets (or

assortments) for users with the goal of optimizing some objective function related to each specific

user’s experience with the service. Recommendation problems (such as those faced by services

like Netflix) represent a canonical version of such a problem. Assortment optimization problems

(as faced by online retailers) are another common example. Now, in practice, rigorous latency

constraints are an important consideration when building algorithms to construct optimized offer

sets. For example, a large-scale study (Akamai (2017)) recently showed that a 100 millisecond delay

in loading page content can result in a decrease in conversion (i.e. consumption, purchase, etc.)

of up to 7%. When taken together with the vast size of the product universe (which can run to

the tens of millions), such constraints place severe limitations on what a real-time algorithm for

constructing an optimized offer can do in practice. As such, practically implementable algorithms

for real-time offer set optimization at scale should ideally exhibit runtimes sub-linear in the size of

the universe of potential products.

The dynamic nature of the product universe limits the use of pre-computation. Moreover, as

will be evident later, distributional models of the user further restrict our ability to exhaustively

pre-compute optimal offer sets. As a result, the dominant approach today to building optimized offer

sets in real-time relies on the design of so-called approximate nearest neighbor (ANN) algorithms.

Succinctly, such algorithms leverage metric-space representations of users and products wherein

the distance between a user and product is inversely related to how attractive the product is to

the user. Whereas such a metric space representation of products may be constructed offline, the

real-time problem then consists of identifying a point in the metric space that corresponds to the

user, and finding the k products in the metric space that are nearest to that user in time sub-linear

in the number of products. This problem is well-solved both theoretically and practically.

Now an economically grounded approach to constructing an optimal offer-set would typically

rely on modeling the user’s utility for various products. An offer set constructed assuming that a

user made choices to maximize utility would then seek not just to pick products that are likely

interesting to the user, but would further seek to account for substitution and complementarity

effects. There is by now a vast literature dedicated to the estimation of models of choice as well as

the associated assortment optimization problems given such models. The assortment optimization

2

algorithms developed in this context are, while typically efficient, not sub-linear. On the other

hand, the ANN paradigm while sub-linear is typically unable to account for assortment effects in a

principled fashion, which typically results in a slew of ad-hoc algorithmic tweaks. Here, we seek to

begin bridging this gap.

1.1. Our Contributions

The present paper seeks to develop sub-linear time algorithms for offer-set optimization while

allowing for rich, economically grounded models of customer choice. Specifically, like is typical in

the ANN paradigm, we are endowed with a metric space. We are given a universe V of n products,

wherein each product v ∈ V is represented as a fixed point in the metric space (we will describe

later on common ways for estimating such an embedding). Similarly, a user U is a random point in

this space; allowing for U to be random is key to modeling user behavior in a way that is congruent

with established models of choice.

Our objective then is to solve, in sub-linear time, a problem of the form

max
S⊂V,|S|≤k

E [f(S, U)] ,

where the decision space is the subsets of products of cardinality at most k, and the expectation

is over U . The principle assumptions we place on the functions f(·, U) are that we require these

functions be sub-modular, and further that f({v}, U) be non-increasing in the distance d(U, v). As

we discuss later, this framework is quite flexible: for instance, it immediately captures the problem

of picking an offer set to maximize conversion (i.e. the probability of a purchase) where consumer

choice is driven by an essentially arbitrary random utility model.

With respect to this model, we make the following contributions:

1. A Sub-linear Time Algorithm: Our primary contribution is a sub-linear time algorithm to

solve the optimization problem above with uniform performance guarantees. Our algorithm

relies on a procedure for constructing, in sub-linear time, a particular sub-linear sized subset

of products. This set enjoys the property that the optimal value of our optimization problem

restricted to this set is close to the optimal value of the optimization problem over all products.

As such, we then simply solve our optimization problem over this restricted set. A greedy

algorithm trivially guarantees both a sub-linear run-time and a constant factor approximation.

2. A New Sampling Scheme: Our key algorithmic contribution is our approach to constructing

3

the sub-linear set of candidate products, which we dub locality-sensitive sampling. Locality-

sensitive sampling is a simple idea motivated by the same locality-sensitive hash functions

that underly ANN algorithms. By re-interpreting the standard near neighbor problem as

one of sampling items according to a specific decreasing function of their distances from a

query point, we are able to solve the same problem for arbitrary decreasing functions. This

generalized sampling problem, along with our sub-linear time solution, may be of independent

interest.

3. Empirical Evaluation: We present an empirical study on a large-scale corpus of real page-view

data from the online advertising platform Outbrain. The dataset contains two billion page

views of seven hundred million unique users. Our experiments establish the value of our

procedure over existing sub-linear time heuristics, and in particular, that (a) our model of

user choice is more accurate in predicting user behavior than the models implicitly assumed

by these heuristics, and (b) our algorithm outperforms these heuristics in terms of conversion

rate.

The rest of this paper is organized as follows: we review related work in the remainder of this

section. Section 2 introduces our problem formally, along with our key modeling assumptions.

Section 3 describes the motivation for our algorithm by way of an idealized sampling procedure. We

then describe our actual algorithm, which is designed to approximate this idealized procedure, in

Section 4. Experimental results are described in Section 5, and finally conclusions are drawn in

Section 6.

1.2. Related Work

This work is related to three existing streams of literature, as we describe now.

Recommendation Algorithms: In the area of recommender systems, the problem of learning user

preferences from previous interactions has been studied extensively (Jin et al. (2003, 2002), Freund

et al. (2003), Schapire and Singer (1998)). For the most part, successful learning algorithms work

by embedding both users and items within some metric space such that a user’s affinity toward

an item is inversely related to their pairwise distance. See Adomavicius and Tuzhilin (2005) for

an extensive survey of content-based, collaborative and hybrid recommendation approaches, and

Zhang et al. (2019) for a survey of modern approaches based on deep learning.

4

A recent problem in this stream of literature is how to capture the impact of diversity in

recommendations. These efforts have mostly focused on quantifying and maximizing diversity in

recommendations sets. Kunaver and Požrl (2017) is an extensive survey of the research in this

area. A key limitation of the current research here is that the diversity metric is not standardized.

Moreover, increasing diversity has often been viewed as sacrificing accuracy of the recommendation

set. We will take a more systematic approach to this.

Assortment Optimization: Another stream of literature related to our work is assortment opti-

mization in the field of operations management. Assortment optimization is a principled modeling

approach to choosing an optimal assortment to offer to customers. Kök et al. (2008) provides an

overview of models found in literature and approaches common in practice. Integral to the assortment

optimization problem is the model for user choice. One of the most well studied and commonly used

choice model is the Multinomial Logit (MNL) model. The assortment optimization problem with

the MNL choice model is tractable, even under various constraints (Talluri and Van Ryzin (2004),

Rusmevichientong et al. (2010), Davis et al. (2013)). Though being attractive due to its tractability,

the MNL models suffers from Independence of Irrelevant Alternatives (IIA) property. To overcome

the IIA limitation, the Nested Logit (Williams (1977)) and Mixed Multinomial Logit models were

proposed. More recently, assortment optimization has been studied under some new choice models

like the Markov chain choice model (Désir et al. (2015)), distance-comparison based choice model

(Kleinberg et al. (2017)), distribution over rankings (Farias et al. (2013)) and its variations (Désir

et al. (2016)). One limitation of this stream of work is that sub-linear time algorithms effectively do

not exist. Even linear time algorithms are rare and restricted to models like the simple multinomial

logit that fail to capture user diversity.

Approximate Nearest Neighbors: The third stream of literature that is relevant to our work is

the problem of nearest neighbor (NN) search. In this problem, the goal is to pre-process the given

data set so that the nearest neighbor to a query can be efficiently calculated. Chávez et al. (2001)

give an overview of methods that have been proposed to solve this problem. Some sample works on

the NN search problem are Omohundro (1989), Sproull (1991), Bentley (1975), and Yianilos (1993).

We focus on a particular type of approximate nearest neighbor search algorithm called Locality

Sensitive Hashing (LSH) (Andoni and Indyk (2008)). Paulevé et al. (2010) describe various hash

5

functions used in LSH algorithms. These have been used in several applications, but in particular

find themselves used extensively in recommendation systems. This application has largely focused on

obtaining binary representations of users and items which can then be used for doing fast similarity

search computations (Karatzoglou et al. (2010), Zhou and Zha (2012), Liu et al. (2014), Das et al.

(2007), Liu et al. (2018), Zhang et al. (2014)).

2. Model and Assumptions

We begin by introducing the core optimization problem that will be the subject of the rest of this

paper. The problem is to select a personalized offer set that maximizes expected reward, subject to

a cardinality constraint. Let V denote the universe of items or products we can offer, and k ∈ N the

maximum cardinality allowed, meaning the set of feasible offer sets is {S ⊂ V : |S| ≤ k}. The need

for personalization is driven by the notion of a user ‘type’: we assume that each user has a type,

which takes values in some set M, and that this type governs the reward we obtain for offering a

given offer set. That is, the reward function, which we denote f(·, ·), is a map from 2V × M to [0, 1],

where w.l.o.g. the reward is bounded above by 1. To fix a concrete running example, consider the

problem of online content recommendation: the items are webpages, and f(S, u) is the conversion

probability, i.e. the probability that a user of type u will visit at least one of the webpages in S if

they are recommended together – we will expand on this example later in this section.

To summarize so far, if we were given a user of type u ∈ M, we would seek to solve the problem

maxS⊂V,|S|≤k f(S, u). We will see later that this problem is ‘easy’ in many reasonable settings.

Instead, one of the two primary challenges we seek to address in this paper is how to deal with

user heterogeneity, i.e. when the user type is not known exactly ex-ante. We will assume that this

uncertainty is modeled as a random variable U over M, whose distribution we know. Our goal then

is to solve the following stochastic optimization problem:

(1) OPT ≡ max
S⊂V,|S|≤k

E [f(S, U)] .

For the rest of this paper, we will take U to be uniformly distributed over m types: u1, . . . , um ∈ M.

There are two motivations for this: first, for m sufficiently large, this assumption is without loss,

as replacing the expectation in (1) with a sample average approximation results in negligible loss.

Lemma 3 in Appendix A shows that m = Ω(k log n) is sufficiently large, where n ≡ |V | is the

6

number of items. Second, in practice, what is quite often done to model U is that past observations

of a given user are mapped to points in M, and U is taken to be a distribution whose support

is over these points; the uniform distribution is one natural choice (we will provide experimental

evidence for this in Section 5.1).

As was described in the Introduction, we seek to solve (1) in online settings in which the number

of items n is massive and the optimization must be performed extremely fast, often so fast that

even algorithms linear in n are too slow. Thus, the second primary challenge we face is to solve,

or approximate, problem (1) in sub-linear time: o(n). This will require three assumptions, which

we will describe in detail in the remainder of this section. Precisely, imposing these assumptions

will allow us to guarantee (in expectation) an approximation of OPT using a randomized algorithm

whose expected runtime, amortized over multiple users, is O(n1−ϵ) for some strictly positive ϵ.

Our first assumption is that the reward function for any user type be monotone submodular:

Assumption 1. For every u ∈ M, the function f(·, u) is monotone submodular.

The set of reward functions satisfying Assumption 1 is rich enough to include the conversion

function for recommendation problems and a subclass of assortment optimization problems against

the mixed multinomial logit choice model. Making this assumption is the first step in achieving

sub-linearity. In fact, Assumption 1 already implies that (1 − 1/e)OPT can be guaranteed in linear

time, as the greedy algorithm is (1 − 1/e)-optimal for maximizing monotone submodular functions

subject to cardinality constraint (Nemhauser et al. (1978)). Since sums of monotone submodular

functions are monotone submodular, the greedy algorithm for (1) achieves (1 − 1/e)OPT. Our

eventual algorithm will achieve a strictly lower (but still constant) approximation guarantee, but

will improve on the greedy algorithm’s O(kmn) runtime.

2.1. User and Item Embedding

The remaining two assumptions we make will allow us to use the machinery of approximate nearest

neighbor algorithms in order to improve from linear to sub-linear time. To discuss these, we will

first need to describe the underlying geometry of our problem. Recall that we model user types as

elements of a set M, which so far is an arbitrary set. We will assume that M is in fact a metric

space, equipped with a metric denoted by d(·, ·). We will also assume that our universe of items is

embedded in this same space: V = {v1, . . . , vn} ⊂ M.

7

Such embeddings are ubiquitous in predictive algorithms for personalization which, by and large,

operate by estimating feature (or latent-factor) representations of users and items so that, loosely

speaking, a user will have a stronger preference for items whose features ‘align’ more closely to his

or her own features (or equivalently, those items whose features are closer in distance with respect

to a carefully calibrated metric). The metric space will often either be Euclidean space or the

unit-ball in Euclidean space, but using the Euclidean metric is not a requirement. Instead, what we

will need to assume about our space is that there exists an appropriate data structure that returns

approximate near neighbors in sub-linear time:

Assumption 2. For any distance γ > 0, and constants c > 1, β ∈ [0, 1), and ϵ ∈ (0, 1], there exists

a (randomized) data structure ANN[V, γ, c, β, ϵ] : M → 2V , and a corresponding α ≡ α(c, β, ϵ) < 1

such that, given any query point u ∈ M:

1. If ∑
v∈V

1(d(v, u) ≤ cγ) ≤ nβ,

then for each v ∈ V such that d(v, u) ≤ γ,

P (v ∈ ANN[V, γ, c, β, ϵ](u)) ≥ 1 − ϵ.

2. The runtime of querying this data structure is O(nα).

Here, constants suppressed by the big-Oh notation depend only on M (e.g. dimensionality).

Assumption 2, while perhaps unusual at first, is stated in the form typically taken in theoretical

guarantees for approximate near neighbor algorithms. In words, the data structure assumed here

takes any point in M as input, and outputs every item in V that is within a pre-specified distance γ

of the input, each with sufficiently high probability. Most importantly, the runtime of this operation

is sub-linear (since α is assumed to be less than 1), assuming that the number of these near neighbors

itself is sub-linear (since β is assumed to be less than 1). As a sanity check, if ϵ could be taken to be

0, and c could be taken to be 1, this would correspond to an exact near neighbor algorithm. Having

ϵ > 0 reflects the fact that near neighbors are only guaranteed to be returned with high probability.

Having c > 1 reflects that in the process, elements of V slightly further than γ are generated as

candidates and need to be pruned.

The study of approximate near neighbor algorithms has produced data structures satisfying

Assumption 2 for a variety of metric spaces, including Euclidean space. As we will review later on,

8

one way of construct such a structure uses a family of so-called locality-sensitive hash functions with

certain ‘nice’ properties. Our ability to solve (1) in sub-linear time will rely on our ability to sample

from a certain distribution on M. The algorithm we develop will rely on a carefully constructed

ensemble of data structures of the type defined by Assumption 2

Finally, while Assumptions 1 and 2 deal with the reward function f and the underlying metric

space (M, d) separately, there has so far been nothing rigorously tying the two together which would

allow us to leverage the metric structure. This is the purpose of our final assumption, which states

that the distance between the embeddings of a user and an item directly encodes the corresponding

reward for offering that item alone to that user:

Assumption 3. There exists a non-increasing function p : R+ → [0, 1] such that

p(d(v, u)) ≥ f({v}, u) for each u ∈ M, v ∈ V.

In addition, there exists some β ∈ [0, 1) and c > 1 such that

∑
v∈V

p

(
d(v, u)

c

)
≤ nβ for each u ∈ M.

The function p(·) captures the inverse relation between distance in M and reward, and will play

a crucial role in our algorithm. In particular, we will treat p(·) as a probability in a sampling-based

approach. The second part of Assumption 3, which will allow us to make use of the approximate

near neighbor in sub-linear time, assumes that for all user types u, the total reward gotten by

offering each item individually is sub-linear. This may, for example, reflect the fact that users’

appetites for content are not limited by a lack of items, but rather a limit in time, attention, etc.

Additionally, this condition is required to be robust in the following sense: there exists some c > 1

such that the condition above still holds if each v ∈ V is replaced by a contracted vector ṽ such

that d(ṽ, u) = d(v, u)/c.

2.2. Examples

We conclude this section by describing two common models which fit the framework we have outlined

and satisfy our three assumptions.

Conversion Under Random Utility Choice Models: As described previously, the goal in recom-

mendation problems is typically to induce conversion, i.e. selecting at least one of the items in the

9

offer set (e.g. clicking on one of a set of web links, or listening to one of a list of songs). In this

setting, f(S, u) is a conversion function which, for any set of items S ⊂ V, is the probability of

conversion when customer u is offered set S.

Random utility models are commonly used to describe user choice behavior. One generic way of

employing these models in the conversion problem is to assume that f(S, u) takes the form

(2) f(S, u) = P
(

max
v∈S

(µ(d(v, u)) + ϵv) > ϵ∅

)
,

where µ : R+ → R+ is a non-increasing function, and the ϵv’s and ϵ∅ are i.i.d. mean-zero random

variables. Here, µ(d(v, u)) + ϵv is the random utility associated with selecting item v, with µ(·)

translating distance to a mean utility, and ϵv capturing idiosyncratic noise. The random utility of

selecting no item is ϵ∅, assuming w.l.o.g. that the mean utility of this option is zero. Users then

choose the option (either one of the recommended items, or no item) that maximizes their utility,

and (2) is the probability that the utility of any recommended item is higher than the utility of

selecting nothing.

The formulation in (2) satisfies Assumption 1 immediately, and the function p(·) required by

Assumption 3 can be constructed from the distribution of the ϵ’s. This setup is extremely general and

encodes many popular choice models. For example, taking the ϵ’s to be Gumbel random variables

yields the multinomial logit model, and allowing for random U yields the mixed multinomial logit.

One commonly used choice of metric space and utility function in the conversion problem

is the following: let M = Sd−1, i.e. the unit ball in d-dimensional Euclidean space. As stated

earlier, this space satisfies Assumption 2. Now since we are dealing with unit-vectors, we have that

d(v, u)2 = 2(1 − v⊤u), so taking µ(x) = 1 − x2/2 yields a natural form for the mean utility:

µ(d(v, u)) = v⊤u.

Finally, it is worth noting that this formulation is compatible with a number of approaches to

constructing metric space representations of users and products, ranging from simple logistic

regression, to collaborative filtering, to state of the art approaches such as factorization machines

(Rendle (2010)) and field-aware factorization machines (Juan et al. (2016)), the latter having been a

key component in the winning entries of three major recent public prediction competitions.

10

Assortment Optimization Under the Mixed Multinomial Logit Model: In operations management,

a classic problem is to select an assortment of products to offer to customers so as to maximize

expected revenue. Changing the objective from conversion to revenue yields a far more difficult

problem, especially given the rich set of choice models and additional operational constraints one

could assume. Our model and algorithm will in no way offer a completely general sub-linear time

solution, but there do exist meaningful instances to which they can be applied, as we illustrate by

example now.

Let rj be the revenue gained if a customer purchases product vj . Here, we will just work out

the setting where the underlying choice model is the multinomial logit:

(3) f(S, u) =
∑

vj∈S

rj

exp(v⊤
j u)

w +
∑

v∈S exp(v⊤u) ,

where w ≥ 0 is a parameter that controls the likelihood that no product is selected. The objective

in (3) is not in general monotone or submodular, but there are a variety of conditions which imply

both. For example, one such condition shown in Han et al. (2019) is if the minimum and maximum

revenues (denoted rmin and rmax) are not too far apart:

rmin
rmax

≥ max
S⊂V,|S|≤k

∑
vj∈S

exp(v⊤
j u)

w +
∑

v∈S exp(v⊤u) .

The expression on the right-hand side is equal to the maximum conversion (as defined previously)

probability for a user of type u across all feasible assortments. In particular, the revenues are

allowed to vary more when this quantity is small, or equivalently, when w is large. The required

upper bound on f({v}, u) can be gotten by treating all revenues as rmax.

3. Algorithm Overview

Before describing our approach, we could first consider whether some sort of brute force pre-

computation would suffice, that is, simply solving (1) in advance for a sufficiently comprehensive set

of distributions U . If feasible, this would certainly qualify as an amortized sub-linear (constant,

in fact) time algorithm. There are at least two reasons why this approach might be infeasible or

at best impractical. First, the size of a ‘comprehensive’ set of distributions U could be massive –

even having made our reduction so that U is uniformly distributed over m points of V , this set is of

size O(nm) – in which case it may be practically impossible to compute and/or store it. Second,

11

in almost all settings, the product set is dynamic. For example, the universe of online content is

constantly changing. Thus, the data structure needs to be dynamic, ideally capable of fast additions

and deletions. The structure we describe in the next section will allow these dynamic updates in

sub-linear time; brute force pre-computation would not.

At a high level, our algorithm proceeds in two steps:

(a) Randomly sample a sub-linear sized subset of V , which we will denote by Ṽ , such that if (1)

is solved over Ṽ instead of V , we are still guaranteed a constant fraction (1 − ϵ) of OPT in

expectation.

(b) Approximately solve (1) over Ṽ using the greedy algorithm.

The crux of our algorithm is the ability to perform step (a) in sub-linear time. Assuming that step

(a) could be performed in sub-linear time, the greedy algorithm in step (b) would then also run

in sub-linear time, and the algorithm as a whole would be guaranteed (1 − 1/e)(1 − ϵ) of OPT in

expectation.

Ignoring the runtime of step (a) for a moment, we will first describe an idealized random sampling

scheme over the items of V that would return a random subset Ṽ that is both sub-linear in size and

guaranteed (in expectation) to preserve a constant fraction of OPT (less a small additive error) when

optimized over. To ease notation, we will fix a distribution U and denote the objective function of

(1) by g(S) = E[f(S, U)].

Suppose that we could randomly sample Ṽ such that

(4) P(v ∈ Ṽ) = g({v}) for each v ∈ V.

That is, the likelihood of any item being included in Ṽ is equal to the reward that the item would

yield when offered alone (recall that this reward is assumed w.l.o.g. to lie in [0, 1]). The following

Lemma shows that making sufficiently many independent draws from such a sampling distribution,

and taking the union of these draws, would result in a subset of V that is guaranteed a constant

fraction of OPT if subsequently optimized over:

Lemma 1. For c ∈ (0, 1], let Ṽ be a random variable taking values in 2V such that

P(v ∈ Ṽ) ≥ cg({v}) for each v ∈ V,

and for s ∈ N, let Ṽs denote the union of s sets drawn i.i.d. from this distribution.

12

Let S∗(Ṽs) be an optimal solution to:

max
S⊂Ṽs,|S|≤k

g(S).

Then for any ϵ1, ϵ2 ∈ (0, 1], if

s ≥ k

cϵ2
log k

ϵ1
,

then we have

E[g(S∗(Ṽs))] ≥ (1 − ϵ1)OPT − ϵ2.

Proof of Lemma 1. Fix any δ ∈ [0, 1] (we will tune this quantity in the end). For any v ∈ V such

that g({v}) ≥ δ, we have

P(v /∈ Ṽs) = P(v /∈ Ṽ)s

≤ (1 − cg({v}))s

≤ (1 − cδ)s

≤ e−scδ,(5)

where the first equality follows from the definition of Ṽs, and the first two inequalities are by

assumption.

Now we fix any optimal solution S∗ to the full problem (1), and divide it into two disjoint sets:

S1 = {v ∈ S∗ : g({v}) ≥ δ} and S2 = {v ∈ S∗ : g({v}) < δ}.

Then we have

g(S∗(Ṽs)) ≥ g(S1 ∩ Ṽs)

≥ P(v ∈ Ṽs ∀ v ∈ S1)g(S1)

≥

1 −
∑

v∈S1

P(v /∈ Ṽs)

 g(S1)

≥
(
1 − ke−scδ

)
g(S1)

≥
(
1 − ke−scδ

)
(g(S∗) − g(S2))

= OPT − ke−scδOPT −
(
1 − ke−scδ

)
g(S2),(6)

where the first line is due to the optimality of S∗(Ṽs) among all solutions contained in Ṽs, the third

13

line is a union bound, the fourth line is due to (5), and the fifth line is due to submodularity.

To conclude, it will suffice to upper bound the second and third terms in (6) by ϵ1OPT and ϵ2,

respectively. To do this, we choose δ = ϵ2/k. For the second term, applying this choice of δ, along

with our condition on s, yields the following bound:

ke−scδOPT ≤ ke− log(k/ϵ1)OPT = ϵ1OPT.

For the third term, by submodularity and the definition of S2,

(
1 − ke−scδ

)
g(S2) ≤ g(S2) ≤

∑
v∈S2

g(v) ≤ kδ = ϵ2.

■

Lemma 1 shows that to approximate OPT to arbitrary precision in expectation, it suffices to

sample s = O(k log k) times from a distribution approximately satisfying (4). In fact, the Lemma

states that the sampling probabilities do not need to match (4), but that they just need to be lower

bounded by some constant fraction c of (4). In the algorithm we outline later, we will arbitrarily

take this fraction to be c = 1/2.

Having guaranteed that a constant fraction of OPT is preserved, the other required condition on

(4) is that the resulting subset be sub-linear in size, as the greedy algorithm that follows is linear in

the size of this set. Fortunately, the expected size of Ṽ sampled according to (4) is guaranteed to

be sub-linear:

(7) E[|Ṽ |] =
∑
v∈V

g({v}) = E
[∑

v∈V

f({v}, U)
]

≤ E
[∑

v∈V

p(d(v, U))
]

≤ nβ,

where both inequalities relied on Assumption 3.

4. Our Approach in Detail: Locality-Sensitive Sampling

To recap, the main conclusion drawn from the previous section is that the ability to sample according

to (4) in sub-linear time is sufficient for our goal of constructing an algorithm that is itself sub-linear

and that achieves a constant approximation of OPT. In this section, we will first describe our

solution to this sampling problem, which makes use of the abstract ANN data structures assumed

to exist in Assumption 2. We will then, as a slight detour (which may be skipped), describe what a

14

concrete version of this approach looks like using actual locality-sensitive hash functions. Finally,

we close the loop and provide our theoretical guarantee in the form of Theorem 1.

4.1. Approximating the Ideal Sampling Distribution via Locality-Sensitive Sampling

Now with the goal of executing the ideal sampling distribution (4), the brute-force method to

sample exactly from this distribution would be to generate n independent Bernoulli variables, whose

means are g({v}) for each v ∈ V . By Lemma 1, repeating this procedure s = Ω(k log k) times

yields a pruned set of items that preserves a good approximation of OPT in expectation. However,

generating the mn Bernoulli variables is clearly a linear time procedure. Fortunately, it is possible

in sub-linear time to approximate (4), i.e. the probabilities in (4) are not matched exactly, but

rather just up to a constant:

P(v ∈ Ṽ) ∼ g({v}) for each v ∈ V.

The key observation that makes this possible is that while the probabilities of the individual events

{vj ∈ Ṽ } need to be strictly controlled, these events are allowed to be arbitrarily correlated. This is

precisely what allows us to leverage the underlying metric space, along with the approximate near

neighbor data structures assumed by Assumption 2, to approximately perform (4).

To see why this is possible, first note that allowing arbitrary correlations implies that to sample

each v with probability g({v}) = E[f({v}, U)], it suffices to first draw u according to U , and then

sample each v with probability f({v}, u). Next recall that by Assumption 3, there exists a function

p(·) such that f({v}, u) ≤ p(d(v, u)). This allows us to use near neighbor queries to do the sampling

As a simple example, if p(x) = 1(x ≤ γ) for some γ, then sampling with probability f({v}, u) is

equivalent to returning all v ∈ V within distance γ of u, and thus a single approximate near neighbor

data structure suffices.

More generally, our algorithm utilizes R = ⌊log2 n1−β⌋ of these structures to approximate any

non-increasing function p(·). For each r ∈ [R], let

(8) ρr =

1/(2r − 1), r ∈ [R − 1]

1/2r−1, r = R

and γr = sup{x : p(x) ≥ 1/2r).

See Figure 1 for a visual depiction of these parameters and our strategy, which is to approximate

p(·) by a step function, each step represented by a single near neighbor data structure.

15

Figure 1: Visual depiction of the approximate sampling scheme. The red curve contains the ideal
sampling probabilities p(·), and the blue curve shows how we attempt to approximate it using a step
function. In this example, R = 4.

Our overall scheme then, defined formally below, is to create a set of approximate near neighbor

structures, and sample from p(d(v, u)) by querying each structure and returning their union. The

various parameters for these structures are given by the ρr’s and γr’s, along with our choice of

ϵ = 1/2 (chosen arbitrarily to save on notation).

Definition 1 (Locality-Sensitive Sampling). Let V be a finite subset of a metric space M satisfying

Assumption 2, For any non-increasing function p : R+ → [0, 1], and any constant c > 1, the

Locality-Sensitive Sampling data structure is a (randomized) map LSS[V, p, c, β] : M → 2V :

LSS[V, p, c, β](u) = ρ0V
⋃ (

R⋃
r=1

ANN[ρrV, γr, c, β, 1/2](u)
)

for all u ∈ M,

where the ρr and γr are defined as in (8), ρ0 = 1
2nβ−1, and each ρrV denotes a random subset of V

gotten by including each element of V independently with probability ρr.

The locality-sensitive sampling data structure achieves the approximate sampling distribution

we seek in sub-linear time. This is stated formally in the following Lemma, whose proof appears in

Appendix B.1.

Lemma 2. For each u ∈ M and v ∈ V ,

P(v ∈ LSS[V, p, c, β](u)) ≥ p(d(v, u))/2.

Moreover, each query LSS[V, p, c, β](u) has runtime

O (nα log n) ,

16

where α = α(c, β, 1/2).

4.2. Aside: LSS Using Locality-Sensitive Hash Functions

So far, we have assumed the existence of ANN data structures satisfying Assumption 2, without

describing how any of these work. In this subsection, we describe one existing approach based

on locality-sensitive hash (LSH) functions (originally described in the seminal work of Indyk and

Motwani (1998)), and show how an LSS structure can be constructed from scratch from these

functions. This subsection can be safely skipped without loss of continuity.

The key component of LSH algorithms are LSH families: let H be a family of functions defined on

M such that when h is chosen uniformly at random from H, we have P(h(u1) = h(u2)) = q(d(u1, u2)).

Here, q : [0, ∞) → [0, 1] is some non-increasing function such that q(0) = 1 and q(x) > 0 if p(x) > 0.

We will show that sampling from V can be approximated in sublinear time using an LSH family H

and our Locality-Sensitive Sampling procedure:

Proposition 1. Let H and q be defined as in the preceding text, and suppose that

logq(cx) q(x) ≤ δ for all x and some δ < 1.1

Then there exists a locality-sensitive sampling data structure built from these hash functions such

that Lemma 2 holds with

α = β + δ(1 − β).

The proof can be found in Appendix B.2. Proposition 1 is only useful assuming the existence

of a family of functions H satisfying the condition in the statement of the Proposition. Does such

a family in fact exist? The search and analysis of appropriate families of functions for various

metric spaces has been an active area of research. For our own setting, where M = Sd−1 and the

metric is induced by the ℓ2 norm, there are recent results (Terasawa and Tanaka (2007), Andoni

and Razenshteyn (2015), Andoni et al. (2015)) for the cross-polytope hash family that essentially

amounts to randomly rotating a set of pre-defined points on the sphere and hashing each vector to

its nearest point. Even simpler is the hyperplane LSH family where each function corresponds to a

single vector, and the function assigns to any vector the sign of its inner product with the defining

vector. Charikar (2002) show that δ can be taken to be 1/c using this family.
1We follow the convention that log0 x = 0 for any x ∈ [0, 1].

17

To describe the locality-sensitive sampling procedure, we begin by defining the vanilla LSH

data structure, which we parameterize by ρ ∈ [0, 1] and integers a, b > 0. To construct the data

structure, first a random subset ρV ⊂ V is taken by including each element of V independently

with probability ρ. Then a total of b hash tables are constructed, with each table storing all of the

items in ρV . The hash function for each table j = 1, . . . , b is vector-valued, constructed by drawing

functions hj
1, . . . , hj

a independently and uniformly at random from H. This entire construction is

done during the preprocessing phase. Then given a query point u ∈ M, we hash u in each table

and return all collisions:

LSHρ,a,b(u) =
{

v ∈ ρV : (hj
1(v), . . . , hj

a(v)) = (hj
1(u), . . . , hj

a(u)) for some j ∈ [b]
}

.

Thus, LSHρ,a,b(u) is a random subset of V , where the randomness is with respect to the sampling

when creating ρV and selecting the hash functions.

Our locality-sensitive sampling algorithm then utilizes R = ⌈1 + log2 n⌉ LSH structures. For

each r ∈ [R], let ρr and γr be defined as in (8). Moreover, let

ar =
⌈
logq(cγr) 2rnβ−1

⌉
and br =

⌈
log(2)2−rδnδ(1−β)(1/q(γr))

⌉
.

Then given a query u, for each r ∈ [R], we calculate LSHρr,ar,br (u) and return their union:

ρ0V
⋃(

R⋃
r=1

LSHρr,ar,br (u)
)

.

To demonstrate this procedure concretely, Figure 2 shows the results of an actual implementation

of locality-sensitive sampling on a synthetic dataset (experiments using real data will be described

in the following section). This synthetic data consisted of a single query point u, and a set V of

50,000 vectors, all lying on the unit Euclidean ball in dimension 50. The vectors in V were randomly

generated in such a way that their distance to u is approximately uniform over [0, 2].

The target sampling probability function p(·), illustrated by the solid black line, corresponds

to the conversion rate for a truncated version of the multinomial logit model.2 This particular

locality-sensitive sampling scheme aims to approximate p(·) by sampling each item at a distance x

from u with probability at least 0.95p(x), as represented by the dotted line. The hash functions
2The exact choice was

p(x) =

{
1 − 10

10+exp(1−x2/2) 0 ≤ x < θ

0 x ≥ θ

18

Figure 2: Example of sampling of products using Locality-Sensitive Sampling. The sampling probability
achieved by the locality sensitive sampling procedure are shown, along with the target sampling
distribution and lower bound.

used were generated from the aforementioned Hyperplane LSH family.3

To estimate the actual sampling probabilities achieved, we repeated the locality-sensitive sampling

procedure 20 times on the dataset (the hash functions were re-chosen randomly in each of these

replications leading to different LSH structures), and then measured the fraction of instances for

which each item was sampled. Each red point in Figure 2 represents the average sampling probability

for a ‘bin’ of about 250 items with nearly equal distance to u. We observe that the locality-sensitive

sampling scheme effectively samples as per the desired distribution.

4.3. Putting It All Together

Through locality-sensitive sampling, we now have a method of approximating our ideal sampling

scheme (4). Lemma 1 requires that Ṽ be constructed from s = Ω(k log k) independent samples from

this distribution, so we require s instances of this overall structure (each LSS structure itself a

combination of ANN structures).

Our final step then is to solve

max
S⊂Ṽ ,|S|≤k

g(S)

using the greedy algorithm, where recall that g(S) = E[f(S, U)]. Specifically, this problem is one

of maximizing a monotone submodular set function under cardinality constraint, and as such, is

known to admit a 1 − e−1 approximation via a greedy algorithm (Nemhauser et al. (1978)). Note

that the 1 − e−1 guarantee is the best-known guarantee among polynomial-time algorithms; indeed,
3The FALCONN (Andoni et al. (2015)) software package was used to build the LSH structures

19

even the conversion problem under the no-noise case (ϵ = 0) falls into a class of geometric set cover

problems known to be APX-hard (Mustafa et al. (2014)).

The greedy algorithm constructs a solution sequentially as follows: at step ℓ, having already

constructed set Sℓ−1, we choose Sℓ to be

Sℓ = Sℓ−1 ∪ argmax
v∈Ṽ

g(Sℓ−1 ∪ {v}),

where ties are broken arbitrarily. Initiating S0 to be the empty set, the algorithm completes in

k steps. Each step of this greedy algorithm requires calculating g(Sℓ−1 ∪ {v}) for each v in Ṽ ,

with each evaluation taking O(m) time. Therefore, the entire greedy procedure runs in O(km|Ṽ |)

time. To summarize, the last two sections have shown that our algorithm successfully achieves an

approximation in sub-linear time.

Theorem 1. For any ϵ1, ϵ2 ∈ (0, 1], there exists a data structure and algorithm that achieves

(1 − e−1)[(1 − ϵ1)OPT − ϵ2]

in expectation and has amortized runtime

O

(
(nα log n + kmnβ) k

ϵ2
log k

ϵ1

)
,

where α = α(c, β, 1/2).

5. Experiments on Real Data

We performed two sets of experiments which demonstrate that in real applications:

1. Modeling: our approach to modeling user behavior, particularly with respect to user diversity

(i.e. a stochastic user U), is more accurate than heuristic sub-linear approaches which do not

incorporate diversity.

2. Optimization: our algorithm outperforms existing sub-linear heuristics in terms of optimizing

reward under our model.

These experiments were run using real data from Outbrain, an online advertising platform that

provides content recommendations on the websites of numerous publishers (e.g. Figure 3). Outbrain

serves over 250 billion personalized content recommendations every month and reaches over 565

million unique visitors. Their promoted articles appear on more than 35,000 websites, reaching over

20

87% of internet users in the U.S. (Outbrain (2017)).

Figure 3: Example of content recommendation by Outbrain.

Our dataset contains a sample of pages viewed and clicked on by users on multiple publisher

sites in the United States over a two-week period. Specifically, the data contains about two billion

page views for 700 million unique users across 560 websites (amounting to around 100GB of data).

Before both experiments, we performed an initial pruning to remove pages which had been viewed

fewer than 750 times and users who had viewed fewer than 30 pages. There were approximately

174, 000 pages and 640, 000 users remaining.

We then partitioned the users into two groups, one test group (consisting of 10,000 users) to be

used for the actual experiments, and one training group (remaining users) to be used for estimating

an accurate metric embedding for the pages. The metric embedding was estimated using a model

called word2vec (Mikolov et al. (2013a,b)): the pages are treated as ‘words’, and each user’s list of

viewed pages (in chronological order) is treated as a ‘sentence’, and the model is trained to predict

probabilities of pages appearing near each other (in sentences).4 The result is a representation of

each page in Euclidean space (which we took to be 50-dimensional), and we normalized each vector

to lie on the unit sphere. This embedding was used in both experiments.

Finally, we chose to model user choice as a truncated multinomial logit, meaning a fixed user
4word2vec relies on a two layer neural network. After the training, the weight matrix of the hidden layer of the

neural network gives the representation of the words in Euclidean space. Its application in this setting is referred to
as prod2vec (Grbovic et al. (2015)). We used the implementation of word2vec in Python Machine Learning Library
(MLlib), built on Apache Spark.

21

type u, if recommended a set of pages S, has conversion probability

f(S, u) =
∑

v∈S, vT u>0 exp(v⊤u/σ)
w +

∑
v∈S, vT u>0 exp(v⊤u/σ) .

Here, σ captures the variability of the ϵ’s under the random utility model (2) (specifically, it is

the scale parameter of the mean-zero Gumbel distribution), and w is a function of the no-choice

utility. In both of our experiments, we varied σ from 0.01 to 1, and tuned w for realistic conversion

probabilities.

5.1. Modeling Diversity in User Behavior

In the coming second set of experiments, we will consider the recommendation problem assuming

that each user U is modeled as the uniform distribution over the first 10 pages he or she has viewed

in the data. Before considering that optimization problem though, it is worth asking whether this

model for U is reasonable. In particular, is it more accurate than models which fix U to be a single

point? (The sub-linear heuristics we will soon compare against can be viewed as implicitly assuming

such single point models).

To evaluate the accuracy of any model that is given a user’s first 10 pages viewed, we measured

how predictive it was of the user’s behavior after these first 10 pages viewed. We compared our

mixture model to two single-point models: Mean, which represents U as the average of the first 10

pages viewed, and Last, which represents U as the 10th page viewed. Now, for each user, our data

contains the pages viewed (the ‘positive’ samples in a classification task), but unfortunately does

not specify when pages were offered to the user and not viewed (the ‘negative’ samples).

As a reasonable proxy for a dataset with positive and negative samples, we randomly selected a

set of pages assumed to have been offered to each user, in a manner that takes into account the

‘popularity’ of pages. Specifically, for each page j, let Tj denote the number of views of the web

page by the training users. Then, a set of exactly 100 pages was randomly sampled such that the

likelihood of each page j being included in the set was proportional to T α
j . The sampling exponent

α controls the extent to which higher likelihoods are given to commonly viewed pages. We varied α

from 0.2 to 1.0 in our experiments.

Given this set of offered pages for each user, the task for each model was to predict which pages

the user had actually viewed. For every page, the models made this prediction by calculating the

conversion probability of an assortment containing just that page. The results are reported in Table

22

AUC Average Precision

σ w α Mixed Mean Last Mixed Mean Last

0.01 2.75 0.2 0.89 0.81 0.74 0.17 0.09 0.08
0.5 0.89 0.81 0.73 0.20 0.12 0.09
0.7 0.89 0.81 0.73 0.25 0.14 0.11
1.0 0.89 0.81 0.73 0.33 0.20 0.15

0.1 4 0.2 0.95 0.95 0.90 0.09 0.09 0.07
0.5 0.95 0.94 0.90 0.11 0.11 0.09
0.7 0.96 0.96 0.91 0.15 0.15 0.12
1.0 0.96 0.95 0.91 0.20 0.20 0.16

1 500 0.2 0.94 0.95 0.90 0.08 0.09 0.07
0.5 0.94 0.95 0.90 0.10 0.11 0.09
0.7 0.94 0.95 0.90 0.13 0.14 0.12
1.0 0.95 0.96 0.92 0.18 0.21 0.16

Table 1: Accuracy of our model of user behavior (Mixed) compared against two single-point benchmarks
(Mean and Last). The area under the ROC curve (AUC) and average precision are reported for these
models, for a variety choices of the multinomial logit tuning parameters (σ, w) and sampling exponent
(α). Results are aggregated over the entire set of test users, replicated 20 times each.

1. Since this is effectively a classification task, the metrics reported are the area under ROC curve

(AUC), and the average precision.5 Table 1 shows that for small to medium-sized values of σ, our

mixed model more accurately predicts user behavior than the two single-point models, and for large

σ, the accuracy of the mean model is comparable. These results are robust over different choices of

α. Finally, the actual AUCs of our mixed model run as high as 0.96, which demonstrates that our

model is quite accurate in absolute terms.

5.2. Optimization

Finally, to test our proposed optimization algorithm, we again modeled users U as being uniformly

distributed over their first 10 viewed pages, this time treating these models as ground truth. Over

these choice models, we considered the problem of recommending a set of 10 pages to maximize

conversion. We compared our own algorithm (LSS) against two benchmarks that are common

practice in reality: Mean, which returns the (approximate) nearest neighbors of the mean of the

user’s first 10 viewed pages, and Last, which returns the (approximate) nearest neighbors of the

user’s 10th viewed page. Both of these benchmarks require a single approximate near neighbor
5Both are common metrics for classification, lying in [0, 1], with higher values signifying greater accuracy.

23

query and are thus sub-linear.

Avg. Conversion Win Percentage

σ w LSS Mean Last LSS Mean Last

0.01 2.75 0.061 0.041 0.037 0.70 0.18 0.12
2.78 0.024 0.016 0.015 0.67 0.19 0.15

0.1 4.0 0.064 0.060 0.049 0.52 0.40 0.08
4.5 0.021 0.020 0.016 0.52 0.38 0.09

1 500 0.042 0.042 0.038 0.25 0.74 0.01
1000 0.021 0.021 0.019 0.24 0.74 0.02

Table 2: Comparison of our algorithm (LSS) to two common practice benchmarks (Mean, Last) on a
recommendation problem for mixed multinomial logit users. Each algorithm’s conversion rate is reported,
averaged over all test users. For each algorithm, the percentage of test users for which that algorithm
achieved the highest conversion is also reported.

The results are summarized in Table 2. As in the previous set of experiments, we varied σ

between 0.01 to 1, and tuned w so that the resulting conversion rates were reasonable. Table 2

shows that, for small to medium-sized values of σ, our algorithm outperforms both benchmarks in

terms of both the average conversion rate achieved across all test users, and the proportion of test

users for which each algorithm was the best. For large-sized σ, the mean benchmark is comparable.

6. Conclusion

We proposed a principled approach to offer set optimization that includes (a) a flexible model for

user choice that incorporates the underlying structure of commonly estimated item and user metric

embeddings, and (b) an algorithm for optimizing offer sets that achieves both a sub-linear runtime

and a uniform performance guarantee. Along the way, we developed a sub-linear time algorithm for

a certain class of sampling problems that generalizes the classic approximate near neighbor problem

and may be of independent interest. Experiments on a real, large-scale dataset from the online

advertising platform Outbrain demonstrated the practicality of our modeling, and superiority of our

algorithm against common practice benchmarks.

24

References

Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: A survey of

the state-of-the-art and possible extensions. IEEE transactions on knowledge and data engineering

17(6):734–749.

Akamai (2017) Akamai online retail performance report: Milliseconds are critical. https:

//www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-

state-of-online-retail-performance-report.jsp.

Andoni A, Indyk P (2008) Near-optimal hashing algorithms for approximate nearest neighbor in high

dimensions. Communications of the ACM 51(1):117.

Andoni A, Indyk P, Laarhoven T, Razenshteyn I, Schmidt L (2015) Practical and optimal lsh for angular

distance. Advances in Neural Information Processing Systems, 1225–1233.

Andoni A, Razenshteyn I (2015) Optimal data-dependent hashing for approximate near neighbors. Proceedings

of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, 793–801 (ACM).

Bentley JL (1975) Multidimensional binary search trees used for associative searching. Communications of

the ACM 18(9):509–517.

Charikar MS (2002) Similarity estimation techniques from rounding algorithms. Proceedings of the thiry-fourth

annual ACM symposium on Theory of computing, 380–388 (ACM).

Chávez E, Navarro G, Baeza-Yates R, Marroquín JL (2001) Searching in metric spaces. ACM computing

surveys (CSUR) 33(3):273–321.

Das AS, Datar M, Garg A, Rajaram S (2007) Google news personalization: scalable online collaborative

filtering. Proceedings of the 16th international conference on World Wide Web, 271–280.

Davis J, Gallego G, Topaloglu H (2013) Assortment planning under the multinomial logit model with totally

unimodular constraint structures. Department of IEOR, Columbia University. Available at http://www.

columbia. edu/ gmg2/logit_const. pdf .

Désir A, Goyal V, Segev D (2016) Assortment optimization under a random swap based distribution over

permutations model. EC, 341–342.

Désir A, Goyal V, Segev D, Ye C (2015) Capacity constrained assortment optimization under the markov

chain based choice model. Operations Research, Forthcoming .

Farias VF, Jagabathula S, Shah D (2013) A nonparametric approach to modeling choice with limited data.

Management Science 59(2):305–322.

Freund Y, Iyer R, Schapire RE, Singer Y (2003) An efficient boosting algorithm for combining preferences.

Journal of machine learning research 4(Nov):933–969.

25

https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp
https://www.akamai.com/uk/en/about/news/press/2017-press/akamai-releases-spring-2017-state-of-online-retail-performance-report.jsp

Grbovic M, Radosavljevic V, Djuric N, Bhamidipati N, Savla J, Bhagwan V, Sharp D (2015) E-commerce in

your inbox: Product recommendations at scale. Proceedings of the 21th ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining, 1809–1818 (ACM).

Han S, Gómez A, Prokopyev OA (2019) Assortment optimization and submodularity .

Indyk P, Motwani R (1998) Approximate nearest neighbors: towards removing the curse of dimensionality.

Proceedings of the thirtieth annual ACM symposium on Theory of computing, 604–613 (ACM).

Jin R, Si L, Zhai C (2002) Preference-based graphic models for collaborative filtering. Proceedings of the

Nineteenth conference on Uncertainty in Artificial Intelligence, 329–336 (Morgan Kaufmann Publishers

Inc.).

Jin R, Si L, Zhai C, Callan J (2003) Collaborative filtering with decoupled models for preferences and ratings.

Proceedings of the twelfth international conference on Information and knowledge management, 309–316

(ACM).

Juan Y, Zhuang Y, Chin WS, Lin CJ (2016) Field-aware factorization machines for ctr prediction. Proceedings

of the 10th ACM Conference on Recommender Systems, 43–50 (ACM).

Karatzoglou A, Smola A, Weimer M (2010) Collaborative filtering on a budget. Proceedings of the Thirteenth

International Conference on Artificial Intelligence and Statistics, 389–396.

Kleinberg J, Mullainathan S, Ugander J (2017) Comparison-based choices. Proceedings of the 2017 ACM

Conference on Economics and Computation, 127–144.

Kök AG, Fisher ML, Vaidyanathan R (2008) Assortment planning: Review of literature and industry practice.

Retail supply chain management, 99–153 (Springer).

Kunaver M, Požrl T (2017) Diversity in recommender systems–a survey. Knowledge-Based Systems 123:154–

162.

Liu H, He X, Feng F, Nie L, Liu R, Zhang H (2018) Discrete factorization machines for fast feature-based

recommendation. arXiv preprint arXiv:1805.02232 .

Liu X, He J, Deng C, Lang B (2014) Collaborative hashing. Proceedings of the IEEE conference on computer

vision and pattern recognition, 2139–2146.

Mikolov T, Chen K, Corrado G, Dean J (2013a) Efficient estimation of word representations in vector space.

arXiv preprint arXiv:1301.3781 .

Mikolov T, Sutskever I, Chen K, Corrado GS, Dean J (2013b) Distributed representations of words and

phrases and their compositionality. Advances in neural information processing systems, 3111–3119.

Mustafa NH, Raman R, Ray S (2014) Settling the apx-hardness status for geometric set cover. Foundations

of Computer Science (FOCS), 2014 IEEE 55th Annual Symposium on, 541–550 (IEEE).

26

Nemhauser GL, Wolsey LA, Fisher ML (1978) An analysis of approximations for maximizing submodular set

functions—i. Mathematical Programming 14(1):265–294.

Omohundro SM (1989) Five balltree construction algorithms (International Computer Science Institute

Berkeley).

Outbrain (2017) Similar tech. URL https://www.similartech.com/technologies/outbrain, [Online; ac-

cessed April 13, 2017].

Paulevé L, Jégou H, Amsaleg L (2010) Locality sensitive hashing: A comparison of hash function types and

querying mechanisms. Pattern Recognition Letters 31(11):1348–1358.

Rendle S (2010) Factorization machines. Data Mining (ICDM), 2010 IEEE 10th International Conference on,

995–1000 (IEEE).

Rusmevichientong P, Shen ZJM, Shmoys DB (2010) Dynamic assortment optimization with a multinomial

logit choice model and capacity constraint. Operations research 58(6):1666–1680.

Schapire WWCRE, Singer Y (1998) Learning to order things. Advances in Neural Information Processing

Systems 10(451):24.

Sproull RF (1991) Refinements to nearest-neighbor searching in k-dimensional trees. Algorithmica 6(1):579–

589.

Talluri K, Van Ryzin G (2004) Revenue management under a general discrete choice model of consumer

behavior. Management Science 50(1):15–33.

Terasawa K, Tanaka Y (2007) Spherical lsh for approximate nearest neighbor search on unit hypersphere.

Workshop on Algorithms and Data Structures, 27–38 (Springer).

Williams HC (1977) On the formation of travel demand models and economic evaluation measures of user

benefit. Environment and planning A 9(3):285–344.

Yianilos PN (1993) Data structures and algorithms for nearest neighbor search in general metric spaces.

SODA, volume 93, 311–21.

Zhang S, Yao L, Sun A, Tay Y (2019) Deep learning based recommender system: A survey and new

perspectives. ACM Computing Surveys (CSUR) 52(1):1–38.

Zhang Z, Wang Q, Ruan L, Si L (2014) Preference preserving hashing for efficient recommendation. Proceedings

of the 37th international ACM SIGIR conference on Research & development in information retrieval,

183–192.

Zhou K, Zha H (2012) Learning binary codes for collaborative filtering. Proceedings of the 18th ACM SIGKDD

international conference on Knowledge discovery and data mining, 498–506.

27

https://www.similartech.com/technologies/outbrain

A. Sample Complexity of the Sample Average Approximation

Lemma 3. Let U1, . . . , Um be i.i.d. samples from distribution U , and let S∗
m be an optimal solution

to

max
S⊂V,|S|≤k

1
m

∑
i∈[m]

f(S, Ui).

There exists some universal constant C such that for any ϵ ∈ (0, 1],

E[f(S∗
m, U)] ≥ OPT − ϵ

as long as

m ≥ C
k log n

ϵ2 .

Proof of Lemma 3. This follows from a standard tail bound for bounded (or sub-gaussian, more

generally) variables. Fix any t > 0. For any S ⊂ V , the random variable f(S, U) lies in the interval

[0, 1] by assumption, and so by Hoeffding’s inequality,

P

∣∣∣∣∣∣ 1
m

∑
i∈[m]

f(S, Ui) − E[f(S, U)]

∣∣∣∣∣∣ > t

 ≤ 2 exp
(
−cmt2

)
,

for some universal constant c. Applying a union bound over all cardinality-constrained S ⊂ V , we

obtain:

P

 max
S⊂V,|S|≤k

∣∣∣∣∣∣ 1
m

∑
i∈[m]

f(S, Ui) − E[f(S, U)]

∣∣∣∣∣∣ > t

 ≤
∑

S⊂V,|S|≤k

P

∣∣∣∣∣∣ 1
m

∑
i∈[m]

f(S, Ui) − E[f(S, U)]

∣∣∣∣∣∣ > t

≤ 2knk exp

(
−cmt2

)
,

which implies (e.g. by integrating over t ≥ 0) that for some constant C,

E

 max
S⊂V,|S|≤k

∣∣∣∣∣∣ 1
m

∑
i∈[m]

f(S, Ui) − E[f(S, U)]

∣∣∣∣∣∣
 ≤ C

√
k log n

m
.

The error incurred by optimizing over the sample average approximation is at most twice this

uniform bound, which equals ϵ for m as given in the statement of the theorem. ■

28

B. Additional Proofs

B.1. Proof of Lemma 2

First, fix any u ∈ M and v ∈ V , and let r0 = ⌈− log2 p(d(v, u))⌉. If p(d(v, u)) ≤ 2ρ0, then clearly

P(v ∈ LSS[V, p, c](u)) ≥ ρ0 ≥ p(d(v, u))/2.

Now, let us consider the case when p(d(v, u)) > 2ρ0. Here we have

P(v ∈ LSS[V, p, c](u)) ≥ P
(

v ∈
R⋃

r=r0

ANN[ρrV, γr, c, 1/2](u)
)

= 1 −
R∏

r=r0

P (v /∈ ANN[ρrV, γr, c, 1/2](u))

≥ 1 −
R∏

r=r0

(1 − ρr/2)

≥ 1/2
2r−1

≥ p(d(v, u))/2,

which is precisely the first statement.

Now, by Assumption 2, we can guarantee O(Rnα) runtime as long as the expected number of

items returned is O(nβ). This is indeed the case:

R∑
r=1

ρr

∑
v∈V

1{d(vj , u) ≤ cγr} =
∑
v∈V

R∑
r=1

ρr1{d(vj , u) ≤ cγr}

≤
∑
v∈V

max
{

2p

(
d(v, u)

c

)
,

1
n

}

≤ 2nβ

■

B.2. Proof of Proposition 1

Two facts follow from the choice of parameters in the LSH data structures. First, for any v such

that p(u, v) ∈ (ρr/2, ρr], the probability that the algorithm returns v is at most ρr and at least

29

ρr[1 − (1 − q(γr)ar)br]. Since we have

(1 − q(γr)ar)br ≤ exp (−q(γr)ar br)

≤ exp
(
−q(γr)(2rnβ−1)logq(cγr) q(γr) log(2)2−rδnδ(1−β)(1/q(γr))

)
≤ 1/2,

it follows that this satisfies the sampling requirement.

Second, the expected total number of collisions in a given LSH structure is at most

(2nβ + ρrnq(cγr)ar)br ≤ (2nβ + ρrn2rnβ−1)br

= 4nβbr

≤ 22−rδnβ+δ(1−β)(1/q(γr)) log(2) + 4nβ.

The first inequality follows from the definition of ar, which implies that

ar ≥ logq(cγr) 2rnβ−1.

The equality comes from the definition of ρr and combining terms. The second inequality follows

from the definition of br, which implies that

br ≤ log(2)2−rδnδ(1−β)(1/q(γr)) + 1.

Thus, across all structure the expected number of collisions is O(nβ+δ(1−β) log n).

30

	Introduction
	Our Contributions
	Related Work

	Model and Assumptions
	User and Item Embedding
	Examples

	Algorithm Overview
	Our Approach in Detail: Locality-Sensitive Sampling
	Approximating the Ideal Sampling Distribution via Locality-Sensitive Sampling
	Aside: LSS Using Locality-Sensitive Hash Functions
	Putting It All Together

	Experiments on Real Data
	Modeling Diversity in User Behavior
	Optimization

	Conclusion
	Sample Complexity of the Sample Average Approximation
	Additional Proofs
	Proof of Lemma 2
	Proof of Proposition 1

