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Abstract

This paper provides the first sample complexity lower bounds for the estimation of simple
diffusion models, including the Bass model (used in modeling consumer adoption) and the SIR
model (used in modeling epidemics). We show that one cannot hope to learn such models until
quite late in the diffusion. Specifically, we show that the time required to collect a number of
observations that exceeds our sample complexity lower bounds is large. For Bass models with
low innovation rates, our results imply that one cannot hope to predict the eventual number
of adopting customers until one is at least two-thirds of the way to the time at which the rate
of new adopters is at its peak. In a similar vein, our results imply that in the case of an SIR
model, one cannot hope to predict the eventual number of infections until one is approximately
two-thirds of the way to the time at which the infection rate has peaked. These limits are borne
out in both product adoption data (Amazon), as well as epidemic data (COVID-19).

1. Introduction

Diffusion models are simple reduced form models (typically described by a system of differential

equations) that seek to explain the diffusion of an epidemic in a network. The Susceptible-Infected-

Recovered (SIR) model is a classic example, proposed nearly a century ago (Kermack and McKendrick

1927). The SIR model remains a cornerstone for the forecasting of epidemics. The so-called Bass

model (Bass 1969), proposed over fifty years ago is similarly another example that remains a basic

building block in forecasting consumer adoption of new products and services. The durability of

these models arises from the fact that they have shown an excellent fit to data, in numerous studies
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spanning both the epidemiology and marketing literatures. Somewhat paradoxically, using these

same models as reliable forecasting tools presents a challenge.

While we are ultimately motivated by the problem of forecasting a diffusion model, this paper

asks a more basic question that is surprisingly unanswered: What are the limits to learning a

diffusion model? We answer this question by characterizing sample complexity lower bounds for a

class of stochastic diffusion models that encompass both the Bass model and the SIR model. We

show that the time to collect a number of observations that exceeds these lower bounds is too large

to allow for accurate forecasts early in the process. In the context of the Bass model our results

imply that when adoption is driven by imitation, one cannot hope to predict the eventual number of

adopting customers until one is at least two-thirds of the way to the time at which the rate of new

adopters is at its peak. In a similar vein, our results imply that in the case of an SIR model, one

cannot hope to predict the eventual number of infections until one is approximately two-thirds of

the way to the time at which the infection rate has peaked. Our analysis is conceptually simple and

relies on the Cramer-Rao bound. The core technical difficulty in our analysis rests in characterizing

the Fisher information in the observations available due to the fact that they have a non-trivial

correlation structure.

Maximum likelihood estimation of diffusion models on product adoption datasets (for products

on Amazon.com), and epidemic data (from the ongoing COVID-19 epidemic) illustrate precisely

the behavior predicted by our theory. As a byproduct of our analysis, we see that the difficulty in

learning a diffusion model stems solely from uncertainty in a single unknown ‘effective population

size’ parameter. In particular, other parameters, including those related to the ‘rate of imitation’ (in

the Bass model) or the ‘reproduction number’ (in the SIR model) are easy to learn. This suggests

that estimators that rely on an (informative) bias in this population size parameter can in fact

overcome the limitations presented by our analysis. Although not a primary contribution of the

present work, we describe a heuristic procedure used to construct such a biased estimator that

yielded one of the first US county-level forecasters available for COVID-19.

Related Literature: Diffusion models find broad application in at least two key domains: epi-

demiology and marketing science. While there is surprisingly little literature that cuts across the

two application domains, the dominant themes are quite similar.

The SIR model (Kermack and McKendrick 1927) is perhaps the best known and most widely

analyzed and used diffusion model in the epidemiology literature. For instance, the plurality of

COVID-19 modeling efforts are founded on SIR-type models (eg. Calafiore et al. (2020), Gaeta
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(2020), Giordano et al. (2020), Binti Hamzah et al. (2020), Kucharski et al. (2020), Wu et al. (2020),

Anastassopoulou et al. (2020), Biswas et al. (2020), Chikina and Pegden (2020), Massonnaud et al.

(2020), Goel and Sharma (2020)). It is common to consider generalizations to the SIR model that

add additional states or ‘compartments’ (Giordano et al. (2020) is a nice recent example); not

surprisingly, learning gets harder with as the number of states increases (Roosa and Chowell 2019).

In a similar fashion, the Bass model (Bass 1969) remains the best known and most widely analyzed

diffusion model in the marketing science literature. The model has found application in a staggering

variety of industries over the past fifty years. Surveys such as Bass (2004), Mahajan et al. (2000),

Hauser et al. (2006) provide a sense of this breadth showing that the model and its generalizations

have found application in tasks ranging from forecasting the adoption of technologies, brands and

products to describing information cascades on services such as Twitter (Bakshy et al. 2011). Just

as in the case of the SIR model, a number of generalizations of the Bass model have been proposed

over the years, including Peterson and Mahajan (1978), Bass et al. (1994), Van den Bulte and Joshi

(2007).

Estimation in SIR Models: The identifiability of the stochastic SIR model (Bartlett 1949, Darling

et al. 2008) is not well understood in the literature. In fact, even identification of the deterministic

model is a non-trivial matter (Evans et al. 2005). Specifically, calibrating a vanilla SIR model to data

requires learning the so-called infectious period and basic reproduction rate. Both these parameters

are relatively easy to calibrate with limited data; this is supported both by the present paper, but

also commonly observed empirically; see for instance Roosa and Chowell (2019). In addition to

these parameters, however, one needs to measure both the initial number of infected individuals

and the size of the susceptible population. Estimating the number of infected individuals poses

a challenge in the presence of limited testing and asymptomatic carriers. Indeed, epidemiological

models for COVID-19 typically assume that measured infections are some fraction of true infections;

eg. Calafiore et al. (2020), Giordano et al. (2020). This challenge is closely related to that of

measuring the true fraction of cases that lead to fatalities (or the so-called Infection Fatality Rate)

(Basu 2020). Our main theorem shows that having to learn the true initial prevalence of the infection

presents a fundamental difficulty to learning SIR models with limited data; this is complemented by

heretofore unexplained empirical work (Chowell 2017, Capaldi et al. 2012).

Estimation in Bass Models: The Bass model has traditionally been estimated using a variety of

weighted least squares estimators; Srinivasan and Mason (1986), Jain and Rao (1990) are popularly

used examples. The key parameters that must be estimated here are the so-called coefficient
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of imitation (the analogue of the reproduction number in the SIR model) and the coefficient of

innovation (which does not have an analogue in the SIR model). In addition one must estimate the

size of the eventual population that will adopt (arguably one of the key quantities one would care

to forecast). It has been empirically observed that existing estimation approaches are ‘unstable’

in the sense that estimates of the size of the population that adopts can vary dramatically even

half-way through the diffusion model (Van den Bulte and Lilien 1997, Hardie et al. 1998) among

other undesirable features. This has been viewed as a limitation of the estimators employed, and

has led to corrections to the estimators that purport to address some of these issues (Boswijk and

Franses 2005). In contrast, our results imply that this behavior is fundamental; as one example we

show that no unbiased estimator of the Bass model can hope to learn the population size until at

least two-thirds of the way through the diffusion model.

2. Model

We first define a general deterministic diffusion model using a system of ODEs. Our paper focuses

on two parameter regimes of this model, which represent the Bass model (Section 2.2) and the SIR

model (Section 2.3). We then describe a stochastic variant of the diffusion model in Section 2.4; our

main result in Section 3 describes the limits to learning the parameters of this stochastic model.

2.1. Deterministic Diffusion Model

We define a general diffusion model with three ‘compartments’ over an ‘effective’ population of size

N . Let s(t), i(t) and r(t) be the size of susceptible, infected, and recovered populations respectively,

as observed at time t, where s(t) + i(t) + r(t) = N for all t ≥ 0. The model is defined by the

following system of ODEs, specified by the tuple of parameters (N, β, γ, p):

ds

dt
= −β s

N
i− ps, di

dt
= β

s

N
i− γi+ ps,

dr

dt
= γi.(1)

We assume that all parameters are non-negative, and that β > γ. The parameters here that we may

need to estimate include β, γ, p and N .
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2.2. Bass Model (γ = 0)

The Bass model is the special case of the diffusion model above where γ = 0 and as already discussed

has been variously used to describe the diffusion of a new product, technology, or even information

in a population. i and s represent the number of people who have and have not adopted the product

respectively by time t. Since γ = 0, there is effectively no r compartment. β s
N i represents the

instantaneous growth rate in adoption contributed by individuals ‘imitating’ existing adopters,

while ps represents the the instantaneous growth rate in adoption contributed by ‘innovators’ who

adopt the product without the influence of existing adopters. The parameter β1 is often called the

coefficient of imitation, while p is called the coefficient of innovation.

In the Bass model, the eventual number of adopters i.e., limt→∞ i(t) = N , is often an important

quantity of interest. As such, N is a key, unknown parameter to estimate in this setting. We define

an additional parameter a , pN . Since s ≈ N initially, a represents the growth rate of innovators

near the beginning of the process.

2.3. SIR Model (p = 0)

The SIR model is the simplest compartmental model in epidemiology that models how a disease

spreads amongst a population, and it can be described by the diffusion model in the case that p = 0.

The parameter γ specifies the rate of recovery; 1/γ is frequently referred to as the infectious period.

β > 0 quantifies the rate of transmission; β/γ , R0 is also referred to as the basic reproduction

number.

In using the SIR model to model an epidemic where only a fraction of all infections are observed

(due to, for example, asymptomatic cases and limited testing) the N parameter is effectively the

actual population of the region being modeled multiplied by the fraction of observed infections. If

the fraction of observed infections is unknown (which it typically is), then N is effectively unknown.

Specifically, the following proposition shows that the quantities corresponding to observing a constant

fraction of an SIR model also constitutes an SIR model with the same parameters β and γ:

Proposition 2.1. Let {(s′(t), i′(t), r′(t)) : t ≥ 0} be a solution to (1) for parameters N =

N ′, β = β′, γ = γ′ and initial conditions i(0) = i′(0), s(0) = s′(0). Then, for any η > 0,

{(ηs′(t), ηi′(t), ηr′(t)) : t ≥ 0} is a solution to (1) for parameters N = ηN ′, β = β′, γ = γ′

and i(0) = ηi′(0), s(0) = ηs′(0).
1The marketing science literature will frequently use the letter q in place of β.
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In words, suppose a disease spreads according to an SIR model amongst the entire population of

(known) size N ′. Suppose we only observe a constant fraction from this process, where this fraction

η is unknown. The proposition above states that the observed process is also an SIR model with the

same parameters β and γ, and an effectively unknown population N = ηN ′. It is known that both

cumulative and peak infections scale with N (Weiss 2013). As these are often the key quantities of

interest, estimating N accurately is a critical task.

2.4. Stochastic Diffusion Model

In the deterministic diffusion model, all parameters are identifiable if i(t) is observable over an

infinitesimally small period of time in either of the two regimes. Specifically:

Proposition 2.2. Suppose either p = 0 or γ = 0. Let i(t) be observed over some open set in R+.

Then the parameters (N, β, γ, p) are identifiable.

Noise — an essential ingredient of any real-world model — dramatically alters this story.

We describe next a natural continuous-time Markov chain variant of the deterministic diffusion

model, proposed at least as early as Bartlett (1949). Specifically, the stochastic diffusion model,

{(S(t), I(t), R(t)) : t ≥ 0}, is a multivariate counting process, with RCLL paths, determined by the

parameters (N, β, γ, p). The jumps in this process occur at the rate in (3), and correspond either to

a new observed infection or adopter (where I(t) increments by one, and S(t) decrements by one)

or to a new observed recovery (where I(t) decrements by one, and R(t) increments by one). Let

C(t) = I(t) +R(t) denote the cumulative number of infections or adoptions observed up to time t.

Denote by tk the time of the kth jump, and let Tk be the time between the (k− 1)st and kth jumps.

Finally, let Ik , I(tk), and similarly define Rk, Sk and Ck. The stochastic diffusion model is then

completely specified by:

Ck − Ck−1 ∼ Bern
{

Sk−1(βIk−1 + pN)
Sk−1(βIk−1 + pN) +NγIk−1

}
,(2)

Tk ∼ Exp
{
βSk−1
N

Ik−1 + pSk−1 + γIk−1

}
.(3)

It is well known that solutions to the deterministic diffusion model (1) provide a good approximation

to sample paths of the diffusion model (described by (2), (3)) in the so-called fluid regime; see

Darling et al. (2008).

The next section analyzes the rate at which one may hope to learn the unknown parameters
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(N, β, γ, p) as a function of k; our key result will illustrate that in large systems, N is substantially

harder to learn than β or γ. In turn this will allow us to show that we cannot hope to learn the

stochastic diffusion model described above until quite late in the diffusion.

3. Limits to Learning

This section characterizes the rate at which one may hope to learn the parameters of the stochastic

diffusion model, simply from observing the process.

Observations: Define the stopping time τ = inf{k : Ik = 0 or Ik = N}; clearly τ is bounded.

For clarity, when k > τ , we define Ck = Ck−1, Ik = Ik−1, and Tk =∞. Note that Ik and Rk are deter-

ministic given Ck, I0, and R0. We define the m-th information set Om = (I0, R0, T1, C1, . . . , Tm, Cm)

for all m ≥ 1.

Evaluation Metric: For any parameter θ, suppose θ̂m is an estimator based on the observations

Om. We define the relative error of θ̂m as:

RelError(θ̂m, θ) ,
(θ̂m − θ)2

θ2 .

A relative error of 1 implies that the absolute error of the estimator is the same size as the true

parameter. Therefore, in order to estimate a parameter θ, it is reasonable to require that the relative

error be at most 1, and ideally shrinking to 0. Our goal is to find the regime of m relative to N

such that RelError(θ̂m, θ) = o(1).

Our main theorem lower bounds the relative error of any unbiased estimator of the parameter

N . We first state the exact assumptions necessary for the two regimes:

Assumption 3.1 (Bass Model). Assume γ = 0, I0 = 1, R0 = 0, and assume β and a = pN are known.

Consider a sequence of systems of increasing size, where N →∞. Let m = o(N).

Assumption 3.2 (SIR Model). Assume p = 0, and assume β and γ are known. Assume I0 ≥ D,

where D is a constant that depends on β and γ. Consider a sequence of systems of increasing size,

where N →∞, and β and γ are constant. Let m = o(N), and I0, R0 ≤ m.

We now state our main result.

Theorem 3.3. Under Assumption 3.1 or Assumption 3.2, if N̂m is any unbiased estimator of N
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based on the observations Om,

E[RelError(N̂m, N)] = Ω
(
N2

m3

)
.(4)

This result implies that to have E[RelError(N̂m, N)] = o(1), we must have m = ω(N2/3)

observations. The next section analyzes how long it takes to reach N2/3 observations. Although

N2/3 is a vanishing quantity compared to N , we show in Section 3.1 that in many parameter regimes,

the time it takes to reach N2/3 observations is a constant portion (e.g., two thirds) of the time it

takes to reach the peak infection rate of the process. In Section 3.2, we analyze the relative error

for the other parameters of the model, and we show that these other parameters are much easier to

learn than N .

Theorem 3.3 is a direct consequence of applying the Cramer-Rao bound to the following theorem,

which characterizes the Fisher information of Om relative to N as N grows large.

Theorem 3.4. Under Assumption 3.1 or Assumption 3.2, the Fisher information of Om relative

to N is

JOm(N) = Θ
(
m3

N4

)
.(5)

The proof of Theorem 3.4 can be found in Section 4. It is notable that the result above provides

a precise rate for the Fisher information as opposed to simply an upper bound. This further allows

us to conclude that the relative error rate in Theorem 3.3 is precisely the rate achieved by an

efficient unbiased estimator for N .

3.1. Time to Learn

Theorem 3.3 implies that at least N2/3 observations are needed before we can learn N . Here we

characterize how long the diffusion model takes to reach this point relative to the time it takes to

reach the point when the rate of new infections is at its peak. In both settings, the peak corresponds

to a time in which a constant fraction of the population has been infected.

3.1.1. Bass Model.

One way to characterize the time at which the rate of new adopters in the Bass model peaks is

to identify the first epoch at which the expected time until the next adoption increases. That is,
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defining

k∗ = inf{k : E[Tk] ≥ E[Tk−1] },

tk∗ corresponds to the (random) time at which this peak in the rate of new adoptions occurs.

We denote by tkCR (where kCR , dN2/3e) the earlier time at which we have sufficiently many

observations to estimate N accurately per Theorem 3.3. The following result characterizes the ratio

E[tkCR ]/E[tk∗ ] as N →∞:

Proposition 3.5. Suppose γ = 0, I0 = 1, pβ < c for some constant c < 1. Suppose p
β = Θ( 1

Nα ).

lim
N→∞

E[tkCR ]
E[tk∗ ]

=


0 α ≤ 1

3

α− 1
3

α
1
3 < α < 1

2
3 α ≥ 1.

Treating β as a constant, we see that the fraction of time until peak by which we can hope to

learn the Bass model, E[tkCR ]/E[tk∗ ], depends on p/β. This latter quantity provides a measure of

the relative contribution of innovators and imitators to the instantaneous rate of overall adoption.

What the result above shows is that if adoption is driven largely by imitation (the case for many

products that rely on word-of-mouth or network effects, and certainly for information) so that p/β

is small (α ≥ 1), we need to wait at least two-thirds of the way until peak to collect enough samples

to learn N .

3.1.2. SIR Model.

For the SIR model, characterizing the random time in which the process hits either the peak

infection rate or N2/3 observations appears to be a difficult task. Therefore, we analyze the analogs

of tkCR and tk∗ in the deterministic model (1). Specifically, let tdCR = inf
{
t : c(t) ≥ N2/3

}
and

td∗ = inf
{
t : d2s/dt2 > 0

}
for the process defined by (1).

Proposition 3.6. Suppose p = 0 and β, γ are fixed. If c(0) = O(log(N)),

lim inf
N→∞

tdCR
td∗
≥ 2

3 .

This suggests that the sampling requirements made precise by Theorem 3.3 can only be met at

such time where we are close to reaching the peak infection rate. Unlike the Bass model, this ratio
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Table 1: Summary of parameter estimation results for the Bass and SIR models. The first row
shows the relative error of estimating each parameter with m observations. The second row shows
argminm{RelError(θ̂m, θ) ≤ 1}, the number of observations needed so that the relative error is less than
1. For the Bass model, a = pN , and a = Θ(N1−α) for α ≥ 0.

Bass SIR
N* β a** β γ

RelError(θ̂m, θ) Ω
(
N2

m3

)
Õ
(

1
m + N2(1−α)

m3

)
Õ
(

1
m + 1

N(1−α)

)
O
(

logm
m

)
O
(

logm
m

)
# observations needed Ω

(
N2/3

)
Õ
(
max{1, N

2
3 (1−α)}

)
Õ (1) O (1) O (1)

*The column for N represents the expected relative error, whereas the other parameters are high-probability results.
**We note that the results for the parameter a hold only for α < 1.

is not specific to a parameter regime for the model.

3.2. Estimating Other Parameters

We now turn our attention to learning the other parameters of the model. The high level message

here is that parameters other than the population N are in general easier to learn, and this is

best understood through Table 1. Specifically, the second row in that table shows the number of

observations needed for a relative error less than one. Our earlier analysis provides lower bounds

on this quantity for the estimation of N . Here we construct explicit estimators for the remaining

parameters yielding upper bounds on the number of observations required to learn those parameters

with a relative error less than one.

We immediately see that for the SIR model, we can accomplish this task with a number of

observations that does not scale with the population size parameter. In the case of the Bass model

the story is more nuanced: it is always easier to learn the the coefficient of imitation, β. On the

other hand when the rate of innovation is very low, learning a := pN is hard, but also not relevant

to tasks related to forecasting N . We next present formal results that support the quantities in

Table 1.

3.2.1. Bass Model.

For the Bass model, we construct estimators for the parameters β and a := pN :

Theorem 3.7. Suppose γ = 0 and I0 = 1. Let a = pN. Suppose m ≤ N2/3 log1/3(N). There exist
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estimators âm, β̂m based on the observations Om such that with probability 1−O( 1
N ),

RelError(β̂m, β) = O

(
logN
m

+ a2

β2
logN
m3

)
,

RelError(âm, a) = O

( logN
m

+ β

a
logN

)
.

The above result demonstrates that learning the coefficient of imitation, β, is always easier than

estimating N . This is also the case for a when p/β = ω(1/N); when p/β = O(1/N), the number of

innovators who adopt is negligible compared to the number of imitators and it is not possible to

estimate a.

3.2.2. SIR Model.

For the SIR model we construct estimators for the parameters β and γ:

Theorem 3.8. Suppose p = 0 and β > γ. Let C0,m,N satisfy m(m+C0) ≤ N , and β
β+γ

N−m−C0
N >

1
2( β
β+γ + 1

2). Then, there exist estimators β̂m and γ̂m, both functions of Om, such that with probability

1− 8
m −B1e

−B2I0,

RelError(β̂m, β) ≤M1

( logm
m

)
,

RelError(γ̂m, γ) ≤M2

(
β2

γ2
logm
m

)
,

where M1,M2 > 0 are absolute constants and B1, B2 > 0 depends only on β and γ.

When β and γ do not scale with the size of the system N (which is the case for epidemics),

this result shows that the relative error for both estimators is O (logm/m), i.e. independent of N .

Consequently, to achieve any desired level of accuracy, we simply need the number of observations

m to exceed a constant that is independent of the size of the system. This is in stark contrast to

Theorem 3.3, in which m needs to scale at least as ω(N2/3) in order to learn N .

4. Proof of Theorem 3.4

Recall that Om = (I0, R0, T1, C1, . . . , Tm, Cm). We will take advantage of conditional independence

to decompose the Fisher information JOm(N) into smaller pieces. We first define the conditional

Fisher information and state some known properties.
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Definition 4.1. Suppose X,Y are random variables defined on the same probability space whose

distributions depend on a parameter θ. Let gX|Y (x, y, θ) = ∂
∂θ log fX|Y ;θ(x|y)2 be the square of the

score of the conditional distribution of X given Y = y with parameter θ evaluated at x. Then, the

conditional Fisher information is defined as JX|Y (θ) = EX,Y
[
gX|Y (X,Y, θ)

]
.

Property 4.2. JX1,...,Xn(θ) = JX1(θ) +
∑n
i=2 JXi|X1,...,Xi−1(θ).

Property 4.3. If X is independent of Z conditioned on Y , JX|Y,Z(θ) = JX|Y (θ).

Property 4.4. If X is deterministic given Y = y, gX|Y (X, y, θ) = 0.

Property 4.5. If θ(η) is a continuously differentiable function of η, JX(η) = JX(θ(η))( dθdη )2.

Since I0 and R0 are known and not random, the Fisher information of Om is equal to the Fisher

information of (T1, C1, T2, C2, . . . , Tm, Cm). Then, Property 4.2 implies

JOm(N) = JT1(N) + JC1|T1(N) + JT2|T1,C1(N) + JC2|T1,C1,T2(N) + · · ·+ JCM |T1,C1,...,Tm(N).(6)

Bass Model: The above expression simplifies greatly for the Bass model since every event

corresponds to a new infection. That is, we know Ck = Ik = I0 + k and Sk = N − k − I0

deterministically. Therefore, Property 4.4 implies that JCk|·(N) = 0 for all k. Moreoever, since

Tk ∼ exp(β Sk−1
N Ik−1 + a

N Sk−1) is independent of T1, C1, . . . , Ck−1, JTk|T1,C1,...,Ck−1(N) = JTk(N).

This yields

JOm(N) =
m∑
k=1
JTk(N).(7)

By letting λk(N) =
(
β
N (k + I0) + a

N

)
(N − k − I0), since Tk ∼ exp(λk(N)), Property 4.5 says that

JTk(N) = JTk(λk)
(
dλk
dN

)2
. Using that the Fisher Information of an exponential distribution with

parameter λ is 1
λ2 , a couple lines of algebra yields JTk(N) = (k+I0)2

N2(N−k−I0)2 . Plugging back into (7),

we get

JOm(N) = 1
N2

m∑
k=1

(k + I0)2

(N − k − I0)2 .(8)

Using I0 = 1 and m = o(N) from Assumption 3.1, we get the desired result JOm(N) = Θ
(
m3

N4

)
.

SIR Model: The analysis for the SIR model is more complicated since Ck is not deterministic

and the distribution of Tk depends on Ck−1. Moreover, there is a non-zero probability that the
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process has terminated before the k’th jump for any k. Define the indicator variable Ek = 1{τ > k}

on the event which the SIR process has not terminated after k jumps. The following lemma states

that both Ek and Ik can be determined from Ck, I0, and R0, which will allow us to decouple

variables in Om in the analysis of the Fisher information. The result follows from the definitions of

τ , Ek, and Ck; the details can be found in the Appendix.

Lemma 4.6. Define rk , I0+k+2R0
2 for all k ≥ 0. For all k, Ek = 1{Ck > rk}. Moreover, when

Ek = 1, Ik = 2Ck − k − I0 − 2R0 > 0.

The next lemma writes an exact expression for JOm(N), analogous of (8) for the Bass model:

Lemma 4.7. The Fisher information of the observations Om with respect to the parameter N is

JOm(N) =
m∑
k=1

Pr(Ek−1 = 1)E
[

C2
k−1

N2(N − Ck−1)(N − Ck−1 + γ
βN)

∣∣∣∣ Ek−1 = 1
]
.(9)

Proof. We start from (6). Note that for any k, Ck and Tk only depend on Ck−1. Indeed, since

Ck−1 determines Ek−1, if Ek−1 = 0 (the stopping time has passed), then Ck = Ck−1 and Tk =∞.

When Ek−1 = 1, the distributions of Ck and Tk are given in (2)-(3). Since β, γ, I0, R0 are known,

Sk−1 = P −Ck−1, and Ik−1 can be determined from Ck−1 (Lemma 4.6), the distributions of Ck and

Tk are determined by Ck−1. Therefore, we use Property 4.3 to simplify (6) to

JOm(N) =
m∑
k=1

(JCk|Ck−1(N) + JTk|Ck−1(N)),

where we used JT1(N) = JT1|C0(N), JC1(N) = JC1|C0(N). Moreover, when Ek−1 = 0, Ck and

Tk are deterministic conditioned on Ck−1, which implies the score in this case is 0 (Property 4.4).

Therefore, we can condition on Ek−1 = 1 to write

JOm(N) =
m∑
k=1

E[gCk|Ck−1(Ck, Ck−1, N) + gTk|Ck−1(Tk, Ck−1, N)|Ek−1 = 1] Pr(Ek−1 = 1).

The last step is to evaluate gCk|Ck−1(Ck, Ck−1, N) and gTk|Ck−1(Tk, Ck−1, N). When Ek−1 = 1, the

distributions of Ck and Tk conditioned on Ck−1 have a simple form provided in (2)-(3). Property 4.5

allows for straight-forward calculations, resulting in (9). See Appendix A.3 for details of this last

step.

What remains is to upper and lower bound (9). The upper bound JOm(N) = O
(
m3

N4

)
follows

from upper bounding Pr(Ek−1) by 1 and the fact that Ck−1 is small relative to N (details of this
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step are in Appendix A.4). As for the lower bound, we first show a lower bound for Pr(Ek−1 = 1)

using the following lemma:

Lemma 4.8. Let p = 1
2

(
β

β+γ + 1
2

)
> 1

2 . There exists a constant D that only depends on β and γ

such that if β(P−m−C0)
β(P−m−C0)+Pγ > p and I0 ≥ D, then Pr(Em = 1) ≥ 1

2 .

This result relies on an interesting stochastic dominance argument and can be found in the

Appendix. Then, similarly to the upper bound, JOm(N) = Ω
(
m3

N4

)
follows from using Pr(Em =

1) ≥ 1
2 and the fact that Ck ≥ k+I0+2R0

2 when Ek = 1 (Lemma 4.6).

5. Numerical Results

We run experiments on real-world datasets for both the Bass and SIR models to demonstrate how

the theoretical results from Section 3 manifest in practice. We describe two sets of empirical results:

• Section 5.2 mirrors the theory in this paper and makes two points: First, the relative error one

sees in real-world datasets on quantities of interest as a function of the number of observations

closely hews to that predicted by our results. Second, the time at which predictions of key

quantities ‘turn accurate’ is late in the diffusions and again matches our theory.

• Our analysis demonstrates that one way to potentially produce accurate forecasts early in

a diffusion would be the use of an estimator with an informative bias on N . In Section 5.3,

we describe how this insight was used in a broader effort to build one of the first broadly

distributed county-level forecasts available for COVID-19.

5.1. A Discrete-Time Diffusion Model

First, we describe the standard Euler-Maruyama discretization of our stochastic diffusion model;

this discretization better aligns with aggregated (as opposed to event level) data. Real-world data

is often stored as arrival counts ∆Ci[t] over a set of discrete time periods t ∈ [T ] and problem

instances i ∈ I. We model these counts as the following Poisson process, obtained by approximately

discretizing the exponential arrival process (3). Precisely, we divide the time horizon into T epochs

14



of length 1, where at each epoch t ∈ [T ] we observe random variables:

(10)
∆Ci[t] ∼ Poisson(λi,t(ai, βi, Ni))

∆Ri[t] ∼ Poisson(γIi[t− 1])

where λi,t(a, β,N) = (a+ βI[t− 1])S[t−1]
N , and ∆Ci[t] and ∆Ri[t] are independent. Essentially, we

evaluate the arrival rate of (3) at the beginning of each epoch, and assume that it remains constant

over the course of the epoch. This arrival process is then split into ∆Ci[t] and ∆Ri[t] according to

the probabilities in (2). The state space then evolves according to:

(11)

Si[t] = Si[t− 1]−∆Ci[t]

Ii[t] = Ii[t− 1] + ∆Ci[t]−∆Ri[t]

Ri[t] = Ri[t− 1] + ∆Ri[t]

For the datasets we study, γ is known a priori, (i.e. from clinical data for the ILINet flu datasets;

for the Bass model γ = 0). We then obtain maximum likelihood estimates âi[t], β̂i[t], N̂i[t] for the

remaining parameters by solving the problem:

(12) max
a,β,N∈[0,Nmax]

t∑
τ=1

log p(∆Ci[τ ];λi,τ (a, β,N))

where p(x;λ) = λx exp(−λ)
x! denotes the Poisson PMF with rate parameter λ, and Nmax is an upper

bound on N known a priori. This reflects that loose upper bounds on N (e.g., the entire population

of a geographic region, for epidemic forecasting) are typically known in real-world problems.

5.2. MLE Performance on Benchmark Datasets

In this section, we fit the Bass and SIR models to real-world datasets and compare the empirical

results to the theoretical results from Section 3.

Datasets We fit the Bass model to a dataset of Amazon product reviews from Ni et al. (2019),

which we take as a proxy for product adoption. Here t indexes weeks since the product’s first
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review, i indexes the product, and Ii[t] represents cumulative number of reviews for product i. For

the SIR model, we use the CDC’s ILINet database of patient visits for flu-like illnesses. Here, t

indexes weeks, i indexes geographic regions, and Ii[t] represents infected patients. See Appendix E

for further details on these datasets.

Comparing Actual Relative Error to Predicted Relative Error Here we fit diffusion models to

products from the Amazon data, as well as individual seasons from the ILINet data, while varying

the number of observations used to fit the model. We compare the observed relative error in

predicting the effective population size N in each to the error predicted by Theorem 3.3. We

find that Theorem 3.3 provides a valuable lower bound despite potential model mis-specification,

aggregated data, and the fact that we jointly estimate the a, β and N parameters.

Specifically, let Ti be the time index of the last observation we have for product i. We take

N̂i[Ti] to be the ground truth parameter for product i. Figure 1 is a scatter plot of the mean (over

instances i and times t) observed relative error RelError(N̂i[t], N̂i[Ti]) against the Cramer-Rao lower

bound of Theorem 3.3, MN̂i[Ti]2/Ci[t]3, where M is a lower bound on the constant suppressed in

the statement of Theorem 3.3. In addition to providing a lower bound, we find that the slope of the

relationship is close to one in both datasets as the error grows small. It is worth re-emphasizing

that this is the case despite the fact that the data here is not synthetic so that the Bass and SIR

models are almost certainly not a perfect fit to the data.

Time to accuracy of peak predictions As discussed earlier, predicting the peak of the infection

process is a key task in the SIR model (as is predicting the peak in new adoptions in the Bass model).

Here we show, through the ILINet data, that the time at which our prediction of the peak number2

of infections in an epidemic ‘turns accurate’ is close to the peak and matches what our theory

suggests. Specifically, let I∗i = maxt∈[Ti] Ii[t] be the maximal number of infections. Given estimates

β̂, N̂ of the diffusion parameters, we define a point estimate for the peak number of infections

Î∗i (β̂, N̂) = E
[

max
τ∈[Ti]

Ii[τ ]
∣∣ β̂, N̂] .

The solid line in Figure 2 depicts errors for the estimator I∗i (β̂i[t], N̂i[t]), where β̂i[t], N̂i[t] are
2In Section 3.1 the peak was defined as the time of the peak rate of infections rather than the peak number. Both

peak definitions refer to a time when a constant fraction of the total population has been infected, and we use the
peak number in these experiments as it is a time that is well-defined even with noisy, real-world data.
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(b) SIR model fit on ILINet patient visits.

Figure 1: Each figure shows the mean of RelError(N̂i[t], N̂i[Ti]) over instances i ∈ I and times t ∈ [T ]
(error bars show 95% CIs), vs. the Cramer-Rao bound MN̂i[Ti]2

Ci[t]3 , where M is a lower bound on the
constant suppressed in the statement of Theorem 3.3. We also show the y = x line (dashed gray) for
comparison. As predicted, the Cramer-Rao bound provides a lower bound on RelError(N̂i[t], N̂i[Ti]),
and the slope of this relationship is close to 1 as the error grows small.

the MLE using data up to time t. At 66% of time to peak3, around of 50% of instances predict

peak infections with >50% error. By the time the peak actually occurs, around 40% of instances

still suffer prediction error in this range. Errors then drop off sharply after this point.

For comparison, let β̃i[t] be the solution to the MLE problem (12) fixing N = N̂i[Ti]; that is,

the MLE for β if we knew the ground-truth value of N a priori. The dashed line in Figure 2 shows

errors for the peak estimate I∗(β̃i[t], N̂i[Ti]). Errors for this estimator drop off much more quickly,

with almost 90% of instances achieving < 50% error by 66% of time to peak. This bears out the

predictions of Theorem 3.8 that once N is known, the remaining parameters of the SIR process are

easy to estimate.

5.3. Working Around the Limits to Learning in the COVID-19 Pandemic

Our theory demonstrates that if we are to produce a valuable forecast early in a diffusion, we must

rely on an estimator that places an informative bias on the effective population parameter, N . Here

we briefly describe a heuristic to construct such a biased estimator that we used to produce one of

the first broadly available county-level forecasts for COVID-19.

As above, we would like to forecast infections Ci[t] for a set of regions i ∈ I. Recall that the
3For reference, the median peak time is 20 weeks.
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Figure 2: % of instances with with relative prediction error
∣∣∣Î∗
i (β̂, N̂)− I∗

i

∣∣∣ /I∗
i > 0.5, vs. % of time to

peak on the ILINet dataset. For “N estimated”, we evaluate the MLE at time t Î∗(β̂i[t], N̂i[t]). Errors for
this estimator remain unreasonably large until around the peak occurs – after which it drops dramatically.
For “N known”, we evaluate the estimator Î∗(β̃i[t], N̂i[Ti]); that is, we assume N known and estimate β
via MLE. Here, most instances estimate the peak accurately after 66% of time to peak, reflecting the
ease of estimating β given N .

effective population Ni for region i is the product of the actual population of the region (which

is obviously known) and the fraction of infections that are actually observed (which is not). To

arrive at a useful bias for Ni, we exploit hetereogeneity in the timing of infections in each region.

Specifically, infections start at different times in each region, and we typically have access to some

set P [t] ⊆ I of regions that have already experienced enough infections to reliably estimate Ni for

i ∈ P [t] via MLE. At a high level, our strategy will be to identify the set P [t], estimate Ni for

i ∈ P [t], then extrapolate these estimates (e.g., via matching on region-level covariates) to obtain

Ni for i /∈ P [t]. We describe this methodology in detail in Appendix E.3.

To identify the set P [t] of regions for which the variance of N̂ may be small, we simply look for

regions that have passed its peak rate of new infections. Concretely, we define P [t] as:

(13) P [t] = {i ∈ I : Ci[t]− Ci[t− 1] ≤ γ1 max
τ≤t

(Ci[τ ]− Ci[τ − 1])},

where γ1 ∈ (0, 1) is a hyperparameter.

5.3.1. Experimental results

We show the results of applying this methodology for forecasting in the COVID-19 pandemic. Our

dataset consists of daily cumulative COVID-19 infections Ci[t] at the level of sub-state regions i ∈ I,
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from March to May 2020. The dataset also includes a rich set of covariates for each region, which

we use to extrapolate the fits Ni : i ∈ P [t] to other regions.

We compare the effectiveness of our heuristic (dubbed Two-Stage) to two extremes: MLE simply

applies an approximate version of the MLE (the maximum likelihood problem here is substantially

harder due to the recovery process being latent) to the data available and Idealized cheats by using

a value of Ni learned by looking into the future. Figure 3 shows weighted mean absolute percentage

error (WMAPE) over regions, with weights proportional to infections on the last day in our dataset

(May 21, 2020), for two metrics relevant to decision making: cumulative infections by May 21, 2020

and maximum daily infections, for regions that have peaked by May 21, 2020. Model vintages vary

along the x-axis so that moving from left to right models are trained on an increasing amount of

data.
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Figure 3: Prediction errors by model vintage, for regions that have peaked by May 21, 2020. Colors
denote different approaches to learning Ni.

At one extreme, Idealized exhibits consistently low error even for early model vintages. This

bears out the prediction of Theorem 3.8: given N , β is easy to learn even early in the infection with

few samples. MLE performs poorly until close to the target date of May 21 at which point sufficient

data is available to learn N . This empirically illustrates the difficult of learning N , as described

in Theorem 3.3. Finally, we see that Two-Stage significantly outperforms MLE far away from the

test date. Close to the test date the two approaches are comparable. For maximum daily infections,

MLE drastically underperforms Two-Stage far from the test date. Our approach to learning from

peaked regions significantly mitigates the difficulty of learning N . Further details on this study can

be found in Appendix E.3.
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6. Conclusion

In this paper, we have shown fundamental limits to learning for the SIR and Bass models, two models

that often serve as building blocks for epidemic and product adoption modeling. In particular, we

proved that in common parameter regimes, the time at which one has enough samples to reliably

learn key parameters of the model is later than two-thirds of the way to the peak of the process.

This implies that predictions from before this point in time (i.e., early on in the process) can be

wildly inaccurate, and therefore one must be cautious in using such early-stage forecasts.

Fortunately, it is important to note that our results do not imply that it is impossible to have

accurate forecasts early on. As our main theorem only pertains to unbiased estimators based on

the observations of the diffusion model, a natural method to work around the lower bound is to

either build biased estimators, make use of other information (i.e. increase the information set Om),

or some combination thereof. We demonstrated one heuristic to do this for COVID-19 forecasting

by taking advantage of the heterogeneity of the timing of the infection in different regions. Going

forward, we believe that formally analysing methods such as this or developing new methods that

work around the lower bound is a valuable avenue for future research.
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Appendices A, B and C contain the proofs of Theorems 3.4, 3.7 and 3.8 respectively. Appendix D
contains the proofs of Propositions 2.1, 2.2, 3.5 and 3.6, each in their own subsections. Appendix E
provides details on the datasets used in Section 5, and Appendix F contains a detailed description
of the COVID-19 forecasting model from Section 5.3.

A. Proof of Theorem 3.4

We finish the sections of the proof that were not included in the main paper. This includes the
proof of Lemma 4.6, Lemma 4.8, calcuations for Lemma 4.7, and details regarding the final step of
the proof.

We define λ(N, k−1, Ck−1) =
(
β(N−Ck−1)

N + γ
)
Ik−1 and η(N,Ck−1) = β(N−Ck−1)

β(N−Ck−1)+Nγ . Thus, for
k ≤ τ , λ(N, k− 1, Ck−1) is the mean of the k-th inter-arrival time and η(N,Ck−1) is the probability
that the arrival in the k-th instance is a new infection rather than a recovery.

A.1. Proof of Lemma 4.6

Proof. Suppose k < τ i.e Ek = 1. Then, k is equal to total number of jumps that have occurred
so far (the number of movements from S to I and from I to R). The number of individuals that
have moved from S to I is Ck − I0 −R0, and the number of movements from I to R is Ck − Ik −R0.
Therefore, k = 2Ck − I0 − Ik − 2R0. Since Ik > 0, Ck > rk.

Suppose k ≥ τ i.e Ek = 0. Then, k is greater than or equal to the total number of jumps, which
is still equal to 2Ck − I0 − Ik − 2R0. Hence Ck ≤ rk in this case.

�

A.2. Proof of Lemma 4.8

Proof. Let Xk
iid∼ Bern(p) for k = 1, 2, . . . . Let {Ak : k ≥ 0} be a stochastic process defined by:

Ak =


C0 if k = 0
C0 +X1 + · · ·+Xk if Ai > ri ∀i < k

Ak−1 otherwise.

Let τA = min{k : Ak ≤ rk} be the “stopping time” of this process.

Claim A.1. Pr(τ ≤ m) ≤ Pr(τA ≤ m).

The proof of this claim involves showing the process {Ak} is stochastically less than {Ck}; the
proof can be found in Section A.2.1. We now upper bound Pr(τA ≤ m). τA ≤ m if and only if
Ak ≤ rk for some k ≤ m. Before this happens, Ak = C0 +X1 + · · ·+Xk. Therefore, if τA ≤ m, it
must be that C0 +X1 + · · ·+Xk ≤ k+I0+2R0

2 for some k ≤ m.

Pr(τA ≤ m) ≤
m∑
k=1

Pr
(
C0 +X1 + · · ·+Xk ≤

k + I0 + 2R0
2

)

=
m∑
k=1

Pr
(
X1 + · · ·+Xk < pk

(
1− 2pk − k + I0

2pk

))
.
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Since E[X1 + · · · + Xk] = pk, using the Chernoff bound (multiplicative form: Pr(
∑k
i=1Xi ≤

(1− δ)µ) ≤ exp(−δ2µ/2)) gives

Pr(τA ≤ m) ≤
m∑
k=1

exp
(
−pk2

((
1− 1

2p

)
+ I0

2pk

)2
)

=
m∑
k=1

exp
(
−pk2

(
1− 1

2p

)2
− I0

2

(
1− 1

2p

)
− I2

0
8pk

)

≤
m∑
k=1

exp
(
−pk2

(
1− 1

2p

)2
− I0

2

(
1− 1

2p

))

≤ exp
(
−
(1

2 −
1
4p

)
I0

) m∑
k=1

exp
(
−pk2

(
1− 1

2p

)2
)

≤ C1 exp(−C2I0),(14)

for constants C1 =
∑∞
k=1 exp

(
−pk

2

(
1− 1

2p

)2
)
, C2 = 1

2 −
1
4p > 0. (C1 is a constant since it

is a geometric series with a ratio smaller than 1, since p > 1/2.) Let D be the solution to
C1 exp(−C2D) = 1

2 . Then, if I0 ≥ D, Pr(Em) = 1− Pr(τ ≤ m) ≥ 1− Pr(τA ≤ m) ≥ 1
2 .

�

A.2.1. Proof of Claim A.1.

Definition A.2. For scalar random variables X,Y , we say that X is stochastically less than Y

(written X ≤st Y ) if for all t ∈ R,

Pr(X > t) ≤ Pr(Y > t).

For random vectors X,Y ∈ Rn we say that X ≤st Y if for all increasing functions φ : Rn → R,

φ(X1, . . . , Xn) ≤st φ(Y1, . . . , Yn).

We make use of the following known result for establishing stochastic order for stochastic
processes.

Theorem A.3 (Veinott 1965). Suppose X1, . . . , Xn, Y1, . . . , Yn are random variables such that
X1 ≤st Y1 and for any x ≤ y,

(Xk|X1 = x1, . . . , Xk−1 = xk−1) ≤st (Yk|Y1 = y1, . . . , Yk−1 = yk−1)

for every 2 ≤ k ≤ n. Then, (X1, . . . , Xn) ≤st (Y1, . . . , Yn).

Proof of Claim A.1. Because of the condition β(N−m−C0)
β(N−m−C0)+Nγ > p, for k ≤ m and k ≤ τ ,

Ck − Ck−1 ∼ Bern(q) for q > p. First, we show (A0, A1, . . . , Am) ≤st (C0, C1, . . . , Cm) using
Theorem A.3. C0 ≤st A0 since C0 = A0 = I0. We condition on Ak−1 = x and Ck−1 = y for x ≤ y,
and we must show Ak ≤st Ck. (We do not need to condition on all past variables since the both
processes are Markov.) If x ≤ rk−1, then Ak = Ak−1 = x ≤ y = Ck−1 ≤ Ck. Otherwise, the process
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Ak has not stopped, and neither has Ck since y ≥ x. Then, Ak ∼ x+ Bern(p) and Ck ∼ y+ Bern(q)
for some q ≥ p. Clearly, Ak ≤st Ck in this case. We apply Theorem A.3, which implies Am ≤st Cm.

Define the function u : Rm+1 → {0, 1}, u(x0, x1, . . . , xm) = 1{∪mk=1{xk ≤ rk}}. Then,
u(A0, A1, . . . , Am) = 1 if and only if τA ≤ m, and u(C0, C1, . . . , Cm) = 1 if and only if τ ≤ m. u
is a decreasing function. Therefore, u(A0, A1, . . . , Am) ≥st u(C0, C1, . . . , Cm). Then, Pr(τ ≤ m) =
Pr(u(C0, C1, . . . , Cm) ≥ 1) ≤ Pr(u(A0, A1, . . . , Am) ≥ 1) = Pr(τA ≤ m) as desired. �

A.3. Calculations for Lemma 4.7

We define λ(N, k − 1, Ck−1) =
(
β(N−Ck−1)

N + γ
)
Ik−1 and η(N,Ck−1) = β(N−Ck−1)

β(N−Ck−1)+Nγ . Thus, for
k ≤ τ , λ(N, k− 1, Ck−1) is the mean of the k-th inter-arrival time and η(N,Ck−1) is the probability
that the arrival in the k-th instance is a new infection rather than a recovery.

Derivation of ECk [gCk|Ck−1(Ck, Ck−1, N)|Ek−1 = 1]. When Ek−1 = 1, we have Ck ∼ Ck−1 +
Bern(η(N,Ck−1)). Therefore, ECk [gCk|Ck−1(Ck, Ck−1, N)|Ek−1 = 1] = JCk∼Bern(η(N,Ck−1))(N). We
reparameterize to write the Fisher information as:

ECk [gCk|Ck−1(Ck, Ck−1, N)|Ek−1 = 1] = JCk∼Bern(η)(η)
(
∂

∂N
η(N,Ck−1)

)2

= 1
η(1− η)

(
∂

∂N
η(N,Ck−1)

)2
.

Use η(N,Ck−1) = β(N−Ck−1)
β(N−Ck−1)+Nγ to derive

∂

∂N
η(N,Ck−1) = β(β(N − Ck−1) + γN)− β(N − Ck−1)(β + γ)

(β(N − Ck−1) + γN)2

= βγCk−1
(β(N − Ck−1) + γN)2 .

Also, 1
η(1−η) = (β(N−Ck−1)+Nγ)2

(N−Ck−1)βNγ .
Substituting,

ECk [gCk|Ck−1(Ck, Ck−1, N)|Ek−1 = 1] = (β(N − Ck−1) +Nγ)2

(N − Ck−1)βNγ

(
βγCk−1

(β(N − Ck−1) + γN)2

)2

=
βγC2

k−1
(N − Ck−1)N(β(N − Ck−1) + γN)2

Derivation of ETk [gTk|Ck−1(Tk, Ck−1, N)|Ek−1 = 1]. Similarly, conditioned on Ek−1 = 1, Tk ∼
Exp(λ(N, k − 1, Ck−1)). Therefore, ETk [gTk|Ck−1(Tk, Ck−1, N)] = JTk∼Exp(λ(N,k−1,Ck−1))(N). We
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reparameterize to write

ETk [gTk|Ck−1(Tk, Ck−1, N)] = JTk∼Exp(λ)(λ)
(
∂

∂N
λ(N, k − 1, Ck−1)

)2

= 1
λ2

(
∂

∂N
λ(N, k − 1, Ck−1)

)2
.

Use λ(N, k − 1, Ck−1) = (β(N−Ck−1)
N + γ)(2Ck−1 − (k − 1)− I0 − 2R0) to derive

∂

∂N
λ(N, k − 1, Ck−1) = βCk−1(2Ck−1 − (k − 1)− I0 − 2R0)

N2

1
λ(N, k − 1, Ck−1) = N

(β(N − Ck−1) + γN)(2Ck−1 − (k − 1)− I0 − 2R0) .

Substituting,

ETk [gTk|Ck−1(Tk, Ck−1, N)] =
(

βCk−1
N(β(N − Ck−1) + γN)

)2

Derivation of JOm(N). Using the expressions derived above for ECk [gCk|Ck−1(Ck, Ck−1, N)|Ek−1 =
1] and
ETk [gTk|Ck−1(Tk, Ck−1, N)], we get

ECk [gCk|Ck−1(Ck, Ck−1, N)|Ek−1 = 1] + ETk [gTk|Ck−1(Tk, Ck−1, N)]

=
βγC2

k−1
(N − Ck−1)N(β(N − Ck−1) + γN)2 +

(
βCk−1

N(β(N − Ck−1) + γN)

)2

=
C2
k−1

(N − Ck−1)N2(N − Ck−1 + γ
βN)

Thus,

JOm(N) =
m∑
k=1

E[gCk|Ck−1(Ck, Ck−1, N) + gTk|Ck−1(Tk, Ck−1, N)|Ek−1 = 1] Pr(Ek−1 = 1)

=
m∑
k=1

E
[

C2
k−1

(N − Ck−1)N2(N − Ck−1 + γ
βN)

∣∣∣∣ Ek−1 = 1
]

Pr(Ek−1 = 1).

A.4. Details of Final Step of Theorem 3.4

Define p , 1
2( β
β+γ + 1

2) > 1
2 as in Lemma 4.8. Assume N is large enough so that m+ C0 ≤ N

2 and
β(N−m−C0)

β(N−m−C0)+Pγ > p (this is possible since β
β+γ > p and m = o(N)).

For the upper bound, we have that Ck ≤ k + I0 + R0 by definition. Since I0, R0 ≤ m by
assumption, Ck ≤ 3m. Moreover, by assumption, Ck ≤ m+C0 ≤ N

2 . Plugging these into (9) results
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in

JOm(N) ≤
m−1∑
k=0

Pr(Ek−1 = 1) (3m)2

N2(N − 1
2N)((N − 1

2N) + γ
βN)

≤ H1
m3

N4 ,

for a constant H1.
Then, similarly to the upper bound, JOm(N) ≥ H2

m3

N4 follows from using Pr(Em = 1) ≥ 1
2 and

the fact that Ck ≥ k+I0+2R0
2 ≥ k

2 when Ek = 1 (Lemma 4.6):

JOm(N) ≥
m−1∑
k=0

1
2

(
k
2

)2

N4 ≥ H2
m3

N4 ,

Combining the upper and lower bounds finish the proof.

B. Proof of Theorem 3.7

Proof. For simplicity, assume m = 2k. Let Ai = min(Ti, Tm−i), 1 ≤ i ≤ k. It is easy to see that
Ai ∼ Exp(li) where

li := (2a+ βm)− (a+ iβ) i
N
− (a+ (m− i)β)m− i

N
.

Consider S =
∑m/2
i=1 Ai. Then by Theorem 5.1 in Janson (2018), for any δ > 0

Pr(S ≥ (1 + δ)µ) ≤ e−l∗µ(δ−ln(1+δ)),

where µ = E[S], l∗ ≤ minm/2i=1 li. It is easy to check that

N −m
N

(2a+ βm) ≤ li ≤ 2a+ βm.

We can let l∗ = (2a+ βm)N−mN . Furthermore, we can also obtain bounds for µ =
∑m/2
i=1

1
li
:

1
2

m

2a+mβ
≤ µ ≤ 1

2
N

N −m
m

2a+mβ
.

Take δ = O(
√

log(N)
m ). Note that δ − ln(1 + δ) = O( log(N)

m ). We will have

Pr( S
m
≥ (1 + δ) µ

m
) ≤ e−l∗µ(δ−ln(1+δ)) = e−

(N−m)m
N

O( log(N)
m

) = O( 1
N2 ),

using the assumption N−m
N ≥ 1

2 . Similar bounds can be obtained for the lower bound. Then one
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can verify that, with probability 1−O(1/N2), we have, for some constant C1

∣∣∣∣m2S − (2a+mβ)
∣∣∣∣ ≤ C1

min(2a+mβ,m/2S)

m
N

+

√
log(N)
m


≤ C1(a

√
log(N)
m

+
√
mβ

√
log(N)).

Similarly, let S′ =
∑m/4
i=1 min(Ti, Tm/2−i). One can verify that with probability 1−O(1/N2),

∣∣∣∣ m4S′ −
(

2a+ m

2 β
)∣∣∣∣ ≤ C1(a

√
log(N)
m

+
√
mβ

√
log(N)).

One can verify for any α̂, β̂ satisfy the following inequality

∣∣∣∣m2S −
(
2â+mβ̂

)∣∣∣∣ ≤ C1

m

2S

m
N

+

√
log(N)
m


∣∣∣∣ m4S′ −

(
2â+ m

2 β̂
)∣∣∣∣ ≤ C1

 m

4S′

m
N

+

√
log(N)
m

 .
Then, we will have

|β̂ − β| = O

a
√

log(N)
m3 + β

√
log(N)
m


|â− a| = O

a
√

logN
m

+
√
mβ

√
logN

 .
In order to obtain the optimal estimators, we consider a union of estimators where Sk =∑k/2

i=1 min(Ti, Tk−i). We find the estimator α̂, β̂ such that for every k,

∣∣∣∣ k2S −
(
2â+ kβ̂

)∣∣∣∣ ≤ C1

 k

2S

m
N

+

√
log(N)
m

 .
This will guarantee, with probability 1−O(1/N),

|β̂ − β| = O

a
√

log(N)
m3 + β

√
log(N)
m


|â− a| = O

 min
1≤k≤m

a
√

logN
k

+
√
kβ
√

logN

 = O

a
√

logN
m

+
√
βa
√

logN

 ,
as desired. �
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C. Proof of Theorem 3.8

Fix an instance in which the assumptions of the theorem statement hold. Let p , 1
2( β
β+γ + 1

2) > 1
2 .

Let Â = Cm−C0
m be an estimator for β

β+γ , B̂ = S̃m
m be an estimator for 1

β+γ for S̃m =
∑min(m,τ)
k=1 Ik−1Tk.

Let β̂ = Â/B̂ and γ̂ = 1/B̂ − β̂.
This first lemma follows from (14) of the proof of Lemma 4.8.

Lemma C.1. If β
β+γ

N−m−C0
N > p, Pr(τ < m) ≤ B1e

−B2I0, where B1, B2 > 0 are constant that
depend only on β and γ.

The next two lemmas give a high probability confidence bound for estimators Â and B̂.

Lemma C.2. For any m, I0 where β
β+γ

N−m−C0
N > 1

2 , for any δ > 0,

Pr
(
Cm − C0

m
/∈
[

β

β + γ
(1− δ)N −m− C0

N
,

β

β + γ
(1 + δ)

]
, τ ≥ m

)
≤ 2 exp(−mδ2/(4 + 2δ)).

Lemma C.3. Let S̃m =
∑min(m,τ)
k=1 Ik−1Tk. Then

Pr
(
S̃m
m

/∈ [ (1− δ)
β + γ

,
(1 + δ)
β + γ

N

N −m− C0
], τ ≥ m

)
≤ 2e−m

N−m−C0
N

(δ−ln(1+δ)).

The next proposition combines the two estimators from the above lemmas and into estimators β̂
and γ̂.

Proposition C.4. Assume β > γ > 0. Let I0 ≤ m < N such that β
β+γ

N−m−C0
N > p. Let z =

N−m−C0
N . Then, for any 0 < δ < 1, with probability 1− 4e−m(δ−ln(1+δ))− 4e−mδ2/(4+2δ)− 2B1e

−B2I0 ,

β̂ ∈
[
β

(1− δ)z2

1 + δ
, β

1 + δ

1− δ

]
(15)

γ̂ ∈
[
γ

z

1 + δ
+ β

(1− δ)z − (1 + δ)2

(1 + δ)(1− δ) , γ
1

1− δ + β
1 + δ − (1− δ)2z2

(1− δ)(1 + δ)

]
,(16)

where B1, B2 > 0 are constants that depend on β and γ.

We first show Theorem 3.8 using these results. We then prove Lemma C.2, Lemma C.3, and
Proposition C.4 in Appendix C.2.

C.1. Proof of Theorem 3.8

Proof. Let δ =
√

5 logm
m . First, we claim that the probability in Proposition C.4 is greater than

1− 8
m − 2B1e

−B2I0 . Note that ln(1 + δ) ≤ δ − δ2

2 + δ3, implying δ − ln(1 + δ) ≥ δ2(1
2 − δ). Since

δ ≤ 1
4 ,

4e−m(δ−ln(1+δ) ≤ 4e−m
δ2
4 ≤ 4

m
.
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Using δ ≤ 1
4 again,

4e−mδ2/(4+2δ) ≤ 4e−m
δ2
5 = 4

m
.

Hence, the bound in C.4 holds with probability greater than 1− 8
m − 2B1e

−B2I0 .
Since we assume m(m+ C0) ≤ N and z = 1− m+C0

N ,

1− z ≤ 1
m
.(17)

From here on, assume the confidence bounds (15)-(16) hold. Note that 1+δ
1−δ ≤ 1 + 3δ and

1−δ
1+δ ≥ 1− 3δ for δ < 1

4 . Then,

(β̂ − β)2 ≤ β2
(
1 + 3δ − (1− 3δ)z2

)2

≤ β2 ((1− z) + 3δ(1 + z))2

≤ β2

 1
m

+ 6

√
5 logm
m

2

≤ β2M3
logm
m

for an absolute constant M3 > 0. The second last step uses (17) and 1 + z ≤ 2. Therefore,
RelError(β̂, β) ≤M1

logm
m .

Similarly,

(γ̂ − γ)2 ≤
(
γ

( 1
1− δ −

z

1 + δ

)
+ β

(
1 + δ − (1− δ)2z2

(1− δ)(1 + δ) − (1− δ)z − (1 + δ)2

(1 + δ)(1− δ)

))2

.(18)

Using the fact that (1− δ)(1 + δ) ≥ 1
2 ,

1
1− δ −

z

1 + δ
≤ 2((1− z) + δ(1 + z)) ≤ 2

 1
m

+ 2

√
5 logm
m

 .

1 + δ − (1− δ)2z2

(1− δ)(1 + δ) − (1− δ)z − (1 + δ)2

(1 + δ)(1− δ) = (1 + δ)− (1− δ)z + (1 + δ)2 − (1− δ)2z2

1− δ2

≤ 2(1− z) + 4δ(1 + z) + 1 + δ

1− δ −
1− δ
1 + δ

z2

≤ 2(1− z) + 8δ + (1 + 3δ)− (1− 3δ)z2

≤ 2(1− z) + 8δ + (1− z2) + 6δ(1 + z2)
≤ (1− z)(3 + z) + δ(8 + 6(1 + z2))

≤ 4
m

+ 20

√
5 logm
m

.
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Substituting back into (18) results in

(γ̂ − γ)2 ≤

γ
 2
m

+ 4

√
5 logm
m

+ β

 4
m

+ 20

√
5 logm
m

2

≤M2β
2 logm
m

,

for an absolute constant M2, since β > γ. This implies the desired result. �

C.2. Proofs of Intermediate Results

C.2.1. Proof of Lemma C.2.

Proof. Fix m, let z := N−m−C0
N , p = β

β+γ z. Then p > 1
2 . Define three stochastic processes

{Ak : k ≥ 0}, {Bk : k ≥ 0}, {C̃k : k ≥ 0}:

Ak =

C0 if k = 0
Ak−1 + Bern(p) otherwise.

Bk =

C0 if k = 0
Bk−1 + Bern(p/z) otherwise.

C̃k =


C0 if k = 0

C̃k−1 + Bern
{

β(N−C̃k−1)
β(N−C̃k−1)+Nγ

}
otherwise.

Note that C̃k is a modified version of Ck where C̃k still evolves after the stopping time.

Claim C.5. Am is stochastically less than C̃m (Am ≤st C̃m); C̃m is stochastically less than Bm
(C̃m ≤st Bm); that is, for any ` ∈ R,

Pr(Bm ≤ `) ≤ Pr(C̃m ≤ `) ≤ Pr(Am ≤ `).

This claim follows from Theorem A.3, using a similar argument to Claim A.1.
Let Ak = C0 +X1 +X2 + . . . Xk where Xi ∼ Bern(p) are independent. We provide the left tail

bound for Cm. Note that when τ ≥ m, Cm
d= C̃m. Hence,

Pr(Cm ≤ mp(1− δ) + C0, τ ≥ m) = Pr(C̃m ≤ mp(1− δ) + C0, τ ≥ m)
≤ Pr(C̃m ≤ mp(1− δ) + C0)
≤ Pr(Am ≤ mp(1− δ) + C0).(19)

Using the Chernoff bound gives,

Pr(Am ≤ mp(1− δ) + C0) = Pr(C0 +X1 + · · ·+Xm ≤ pm(1− δ) + C0)
= Pr (X1 + · · ·+Xm ≤ mp (1− δ))

≤ exp
(
−mp2 δ2

)
.
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Therefore,

Pr
(
Cm − C0

m
≤ p

z
(1− δ)z, τ ≥ m

)
= Pr (Cm ≤ mp(1− δ) + C0, τ ≥ m)

≤ exp
(
−mp2 δ2

)
≤ exp(−mδ2/4).

Let Bk = C0 + Y1 + . . .+ Yk where Yi ∼ Bern(p/z) are independent. Similarly, for the upper
tail bound, we have

Pr
(
Cm − C0

m
≥ p

z
(1 + δ), τ ≥ m

)
= Pr(Cm ≥ mp/z(1 + δ) + C0, τ ≥ m)

≤ Pr(Bm ≥ mp/z(1 + δ) + C0)
≤ Pr(C0 + Y1 + · · ·+ Ym ≥ mp/z(1 + δ) + C0)

≤ exp(−mp/z2 + δ
δ2) ≤ exp(−mδ2/(4 + 2δ))

due to the multiplicative Chernoff bound Pr(Z ≥ E[Z](1 + δ)) ≤ e−
Z

2+δ δ
2

where Z is the sum of
i.i.d Bernoulli random variables.

Combine upper and lower tail bounds and note that p/z = β
β+γ . Then, we can conclude, for any

δ > 0,

Pr
(
Cm − C0

m
/∈ [ β

β + γ
(1− δ)z, β

β + γ
(1 + δ)], τ ≥ m

)
≤ 2 exp(−mδ2/(4 + 2δ)).

�

C.2.2. Proof of Lemma C.3.

Proof. Conditioned on (I0, C0, I1, C1, . . . , Im−1, Cm−1) with τ ≥ m, we have

Ik−1Tk ∼ Exp
(
β
N − Ck−1

N
+ γ

)
are independent exponential random variables.

Theorem 5.1 in Janson (2018) gives us a tail bound for the sum of independent exponential
random variables: let X =

∑n
i=1Xi with Xi ∼ Exp(ai) independent, then for δ > 0,

Pr(X ≥ (1 + δ)µ) ≤ 1
1 + δ

e−a∗µ(δ−ln(1+δ)) ≤ e−a∗µ(δ−ln(1+δ))(20)

Pr(X ≤ (1− δ)µ) ≤ e−a∗µ(δ−ln(1+δ))(21)

where µ = E[X], a∗ = min1≤i≤n ai.

Let S̃m| ~C,~I be S̃m conditioned on (I0, C0, I1, C1, . . . , Im−1, Cm−1) with τ ≥ m. Let µ =
E[S̃m| ~C,~I ] =

∑m
k=1

1
β(N−Ck−1)/N+γ , a∗ = min1≤k≤m β(N − Ck−1)/N + γ. It is easy to verify the
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following facts

µa∗ ≥
m∑
k=1

a∗
(β + γ) ≥ m

N −m− C0
N

1
β + γ

≤ µ

m
≤ 1
β + γ

N

N −m− C0
.

Combining these with Eqs. (20) and (21), we have

Pr

 S̃m| ~C,~I
m

/∈
[(1− δ)
β + γ

,
(1 + δ)
β + γ

N

N −m− C0

] ≤ Pr

 S̃m| ~C,~I
m

/∈
[
µ(1− δ)

m
,
µ(1 + δ)

m

]
≤ 2e−m

N−m−C0
N

(δ−ln(1+δ)).

Therefore,

Pr
(
S̃m
m

/∈ I, τ ≥ m
)

=
∫
~C,~I|τ≥m

Pr
(
S̃m
m

/∈ I | ~C, ~I, τ ≥ m
)
f(~C, ~I|τ ≥ m) Pr(τ ≥ m)

≤ 2e−m
N−m−C0

N
(δ−ln(1+δ)) Pr(τ ≥ m)

≤ 2e−m
N−m−C0

N
(δ−ln(1+δ)).

�

C.2.3. Proof of Proposition C.4.

Proof. Let β̂ = Cm−C0
S̃m

, z = N−C0−m
N . Suppose x ∈ β

β+γ [(1− δ)z, 1 + δ], y ∈ 1
β+γ [1− δ, (1 + δ)1/z].

Then,

x

y
∈
[
β

(1− δ)z2

1 + δ
, β

1 + δ

1− δ

]
(22)

Similarly, let γ̂ = m
S̃m
− β̂. Suppose a ∈ (β + γ)[ z

1+δ ,
1

1−δ ], b ∈ β[ (1−δ)z2

1+δ , 1+δ
1−δ ]. Then

a− b ∈
[
γ

z

1 + δ
+ β

(1− δ)z − (1 + δ)2

(1 + δ)(1− δ) , γ
1

1− δ + β
1 + δ − (1− δ)2z2

(1− δ)(1 + δ)

]
.(23)

Then, for any sets U1, U2,

Pr(β̂ ∈ U1, γ̂ ∈ U2) ≥ 1− Pr(β̂ /∈ U1)− Pr(γ̂ /∈ U2)
≥ 1− Pr(β̂ /∈ U1, τ > m)− Pr(β̂ /∈ U2, τ > m)− 2 Pr(τ < m)

≥ 1− 4e−m(δ−ln(1+δ)) − 4e−mδ2/(4+2δ) − 2B1e
−B2I0 ,

where the last step uses Lemma C.1, Lemma C.2 and Lemma C.3, using the intervals (22) and (23)
for U1 and U2 respectively.

�
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D. Proofs of Propositions

D.1. Proof of Proposition 2.1

Proof. As in Miller (2017, 2012), the solution {(s′(t), i′(t), r′(t)) : t ≥ 0} can be written as:

s′(t) = s′(0)e−ξ′(t)

i′(t) = N ′ − s′(t)− r′(t)

r′(t) = r(0) + γ′N ′

β′
ξ′(t)

ξ′(t) = β′

N ′

∫ t

0
i′ (t∗) dt∗

Making the appropriate substitutions yields the following equivalent system:

i′(t) = N ′ − s′(0) exp
(
− β

′

N ′
ξ(t)

)
− r(0)− γ′N ′

β′
ξ′(t)(24)

ξ′(t) = β′

N ′

∫ t

0
i′ (t∗) dt∗.(25)

Therefore, it remains to show that for η > 0, {(s(t), i(t), r(t)) : t ≥ 0} , {(ηs′(t), ηi′(t), ηr′(t)) :
t ≥ 0} is a solution for (24) and (25) where N ′ is replaced with ηN ′. Starting with (24),

i′(t) = N ′ − s′(0) exp
(
−ξ′(t)

)
− r′(0)− γ′N ′

β′
ξ′(t)

ηi′(t) = η

(
N ′ − s′(0) exp

(
−ξ′(t)

)
− r′(0)− γ′N ′

β′
ξ′(t)

)
= ηN ′ − αs′(0) exp (−ξ(t))− ηr(0)− γ′ηN ′

β′
ξ(t)

where ξ(t) = ξ′(t) = β′

N ′η

∫ t
0 ηi
′ (t∗) dt∗. Noting that ξ′(t) = ξ(t) and substituting i(t) = ηi′(t)

yields the equations below, clearly showing that {(s(t), i(t), r(t)) : t ≥ 0} satisfy (24) and (25):

i(t) = ηN ′ − s(0) exp (−ξ(t))− r(0)− γ′ηN ′

β′
ξ(t)

ξ(t) = β′

N ′η

∫ t

0
i (t∗) dt∗.

�
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D.2. Proof of Proposition 2.2

D.2.1. SIR Model

Proof. Consider initial conditions (s(0), i(0), 0), as in Miller (2017, 2012), the analytical solution is
given by

s(t) = s(0)e−ξ(t),
i(t) = N − s(t)− r(t),

r(t) = γ N

β
ξ(t),

ξ(t) = β

N

∫ t

0
i(t′)dt′.

Consider two SIR models with parameters (N, β, γ) and (N ′, β′, γ′), and initial conditions (s0, i0, 0)
and (s′0, i′0, 0) respectively. We claim that infection trajectories i(t) and i′(t) being identical on an
open set [0, T ) implies the parameters and initial conditions are identical as well.

Assume i(t) = i′(t) for all t ∈ [0, T ); then, given the exact solution above it follows that

N − s0e
− β
N
x − γx = N ′ − s′0e

− β′
N′ x − γ′x, for all x ∈

[
0,
∫ T

0
i(t)dt

]
As functions of x, both the RHS and LHS in the equality above are holomorphic, and hence, using
the identity theorem, we then have for all x ∈ R, there is N − s0e

− β
N
x − γx = N ′ − s′0e

− β′
N′ x − γ′x.

Then the following implies γ = γ′:

−γ = lim
x→+∞

N − s0e
− β
N
x − γx

x
= lim

x→+∞
= N ′ − s′0e

− β′
N′ x − γ′x
x

= −γ′.

Hence for all x ∈ R, N −s0e
− β
N
x = N ′−s′0e

− β′
N′ x. Again, by taking x to infinity, we can conclude

N = N ′ by the following

N = lim
x→+∞

(
N − s0e

− β
N
x
)

= lim
x→+∞

(
N ′ − s′0e

− β′
N′ x
)

= N ′.

Furthermore, by taking x = 0, we can also get s0 = s′0 and then β = β′ follows. This completes
the proof. �

D.2.2. Bass Model

Proof. Consider the initial condition i(0) = 0. By the analytic solution given by Bass (1969), we
have

i(t) = N
1− e−(p+β)t

β
p e
−(p+β)t + 1

.

Consider two bass models with parameters (N, β, p) and (N ′, β′, p′) and initial conditions
i(0) = 0, i′(0) = 0 respectively. We claim that trajectories i(t) and i′(t) being identical on an open
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set [0, T ) implies the parameters are identical as well.
Assume i(t) = i′(t) for all t ∈ [0, T ); then, given the exact solution above it follows that

N
1− e−(p+β)t

β
p e
−(p+β)t + 1

= N ′
1− e−(p′+β′)t

β′

p′ e
−(p′+β′)t + 1

, for all t ∈ [0, T )(26)

As functions of t, both the RHS and LHS in the equality above are holomorphic, and hence, using
the identity theorem, we then have Eq. (26) holds for all t ∈ R.

By taking t to infinity, we can easily obtain N = N ′. Furthermore, taking the derivative for t on
both sides of Eq. (26), one can obtain

(p+ β)2

p

e−(p+β)t

(β/p · e−(p+β)t + 1)2 = (p′ + β′)2

p′
e−(p′+β′)t

(β′/p′ · e−(p′+β′)t + 1)2 .(27)

By taking t = 0 on both sides of Eq. (27), one can verify that p = p′. Furthermore, let g(t) =
(p+β)2

p
e−(p+β)t

(β/p·e−(p+β)t+1)2 and g′(t) = (p′+β′)2

p′
e−(p′+β′)t

(β′/p′·e−(p′+β′)t+1)2 .

Note that

−(p+ β) = lim
t→+∞

ln(g(t))
t

= lim
t→+∞

ln(g′(t))
t

= −(p′ + β′).

We then can conclude β = β′. This completes the proof.
�

D.3. Proof of Proposition 3.5

Proof. Note that E[Ti] = N
pN(N−i)+βi(N−i) . Then

E[tkCR ] = E

N2/3−1∑
i=1

Ti

 =
N2/3−1∑
i=1

N

pN(N − i) + βi(N − i) .

Let f(x) = N
pN(N−x)+βx(N−x) , we use f(x) as a proxy to bound E[tkCR ]. Easy to verify that f(x) is

decreasing when x ∈ (0, r̊] where r̊ = (1− p/β)N/2. Note that p/β < c for some constant c. Hence
when N →∞, we have r̊ � N2/3 and

N2/3−1∑
i=1

N

pN(N − i) + βi(N − i) ≥
∫ N2/3

x=1
f(x)dx

= ln(βx+Np)− ln(N − x)
p+ β

∣∣∣N2/3

x=1

= ln(βN2/3 +Np)− ln(β +Np) + ln(N − 1)− ln(N −N2/3)
p+ β

≥ ln(βN2/3 +Np)− ln(β +Np)
p+ β

.
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Similarly, for tk∗ , we have

E[tk∗ ] =
m̊−1∑
i=1

N

pN(N − i) + βi(N − i)

≤ f(1) +
∫ r̊

x=1
f(x)dx

≤ f(1) +
ln(βN +Np)− ln(pN + β) + ln 1

1−c
p+ β

≤ ln(βN +Np)− ln(pN + β) + c′

p+ β

for some absolute constant c′.
Let β

p = C ·Nα for some constant C. We then have

E[tkCR ]
E[tk∗ ]

≥ ln(βN2/3 +Np)− ln(β +Np)
ln(βN + pN)− ln(pN + β) + c′

≥
ln
(
CN2/3+α+N
CNα+N

)
ln
(
CN1+α+N
CNα+N

)
+ c′

=: kN .

Then, it is easy to verify that when 1
3 < α ≤ 1, limN→∞ kN = α−1/3

α . When α > 1, limN→∞ kN =
2
3 .

Note that we also have E[tkCR ] ≤ f(1) +
∫N2/3

x=1 f(x)dx and E[tk∗ ] ≥
∫ r̊
x=1 f(x)dx. Similarly, one

can verify that

lim sup
N→∞

E[tkCR ]
E[tk∗ ]

≤


0 α ≤ 1

3
α− 1

3
α

1
3 < α ≤ 1

2
3 α > 1

.

This completes the proof. �

D.4. Proof of Proposition 3.6

Let td∗ = inf{t : β(s)t/N < γ} be the time when the number of infections is at its peak. It is easy to
show that td2 ≤ td∗. We show the analog of Proposition 3.6 with the peak defined instead as td∗ — i.e.
we show lim infN→∞

tdCR
td∗
≥ 2

3 . Then, the desired result follows since td2 ≤ td∗.
First, we prove td2 ≤ td∗. We can write d2s

dt2 as

d2s

dt2
= −β

N

(
ds

dt
i+ di

dt
s

)
= −β

N

(−βs
N

i2 +
(
βs

N
− γ

)
is

)
= β2is

N2

(
i− s+ γ

β
N

)
.(28)
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From (28), we see that d2s
dt2 > 0 if and only if

s <
γ

β
N + i.

By definition, td∗ occurs at a time when

s <
γ

β
N.

Since s is decreasing and i is non-negative, clearly td2 occurs before td∗.
Next, we prove lim infN→∞

tdCR
td∗
≥ 2

3 . The crux of the problem is summarised in two smaller
results, bounding tdCR and td∗ respectively. Let ρ1 = 1− 1

log logN and ρ2 = γ
β .

Proposition D.1. There exists a constant ν1 that only depends on γ, β such that

tdCR ≥
1

β − γ

(
2
3 log ν1N

c(0)3/2 + log ν
2/3
1
c(0)

(
1− c(0)

N2/3

))
.

Proposition D.2. There exists a constant ν2 that only depends on γ, β and a constant C = O(1),
such that

td∗ ≤
1

βρ1 − γ
log ν2N

i(0) + C

1− ρ1
.

The argument follows directly by taking the limit of the bounds we provide in Propositions D.1-
D.2. Specifically, using that the constants ν1, ν2 do not depend on N , we arrive at

lim sup
N→∞

td∗
tdCR
≤ lim sup

N→∞

1
βρ1−γ log ν2N

i(0) + C
(1−ρ1)

1
β−γ

(
2
3 log ν1N

c(0)3/2 + log ν
2/3
1
c(0)

(
1− c(0)

N2/3

))
= lim sup

N→∞

β − γ
βρ1 − γ

· logN + log ν2 − log i(0)
2
3 logN + 4

3 log ν1 − 2 log c(0) + log
(
1− c(0)

N2/3

)
+ lim sup

N→∞

(β − γ)C log logN
2
3 logN + 4

3 log ν1 − 2 log c(0) + log
(
1− c(0)

N2/3

)
ρ1 → 1 as N →∞, so β−γ

βρ1−γ → 1. Since c(0) = O(log(N)) by assumption (and i(0) ≤ c(0)), and
C = O(1) by Proposition D.2, the limits of the two summands above are 3/2 and 0 respectively,
which concludes the proof.

D.4.1. Proof of Proposition D.1.

Proof of Proposition D.1. Define ĩ(t) such that ĩ(0) = i(0) and d̃i
dt = (β − γ)̃i, implying

ĩ(t) = i(0) exp{(β − γ)t}.
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Since d̃i
dt ≥

di
dt for all t, ĩ(t) ≥ i(t) for all t. Then, for all t,

ds

dt
= −β s

N
i ≥ −βi ≥ −βĩ.

Hence we can write

s(t) ≥ s(0) +
∫ t

0
−βĩ(t′)dt′

= s(0)− βi(0)
∫ t

0
exp{(β − γ)t′}dt′

= s(0)− βi(0)
β − γ

(exp{(β − γ)t} − 1)

Since s(0)− s(tdCR) = N2/3 − c(0), setting t = tdCR and solving for tdCR in the inequality above
results in

tdCR ≥
1

β − γ
log

(
β − γ
βi(0) (N2/3 − c(0))

)
≥ 1
β − γ

log
(
β − γ
βc(0) (N2/3 − c(0))

)
= 1
β − γ

(
log β − γ

βc(0) (N2/3) + log β − γ
βc(0)

(
1− c(0)

N2/3

))

= 1
β − γ

(
2
3 log ν1N

c(0)3/2 + log ν
2/3
1
c(0)

(
1− c(0)

N2/3

))

for ν1 =
(
β−γ
β

)3/2
as desired. �

D.4.2. Proof of Proposition D.2.

For ρ ∈ [0, γβ ], let tρ be the time t when s(t)
N = ρ. ρ will represent the fraction of the total population

that is susceptible. Since ρ ≤ γ
β , i is increasing for the time period of interest.

Let β > γ, N be fixed. Let ρ1 = 1− 1
log logN and ρ2 = γ

β . We assume N is large enough that
ρ1 > ρ2, hence tρ1 < tρ2 . td∗ = tρ2 .

Lemma D.3. For any ρ ∈ [0, γβ ], i(tρ) ≥ N(1− ρ)βρ−γβρ −
c(0)

2 .

Proof of Lemma D.3. Fix ρ. At time tρ, the total number of people infected is c(tρ) = i(tρ)+r(tρ) =

N(1− ρ), by definition. At any time t ≤ tρ, the rate of increase in i is β
s(t)
N
−γ

β
s(t)
N

≥ βρ−γ
βρ of the rate of

increase in c. Therefore, i(tρ)− i(0) ≥
(βρ−γ

βρ

)(
c(tρ)− c(0)

)
and i(tρ) ≥

(βρ−γ
βρ

)
N(1−ρ)− βρ−γ

βρ c(0) +
i(0). Using the fact that i(0) ≥ c(0)

2 and rearranging terms gives the desired result. �

Lemma D.4. For t ∈ [tρ1 , tρ2 ], where ρ2 > ρ1 for ρ1, ρ2 ∈ [0, γβ ], tρ2 − tρ1 ≤
N(ρ1−ρ2)
βρ2i(tρ1 ) .
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Proof of Lemma D.4. The difference in s between tρ1 and tρ2 is s(tρ1) − s(tρ2) = N(ρ1 − ρ2).
As a consequence of the mean value theorem, s(tρ2 )−s(tρ1 )

tρ2−tρ1
≤ maxt∈[tρ1 ,tρ2 ]{dsdt}. Using these two

expressions,

N(ρ1 − ρ2)
tρ2 − tρ1

≥ min
{
−ds
dt

}
= min

{
β
s(t)
N

i(t) : t ∈ [tρ1 , tρ2 ]
}
≥ βρ2i(tρ1)

The desired expression follows from rearranging terms. �

Lemma D.5. For any ρ ≤ min{ γβ , 1/2}, tρ ≤
1

βρ−γ log ν2
i(0)N , for ν2 = 2(β−γ)

β .

The proof of this lemma follows the exact same procedure as the proof of Proposition D.1.

Proof of Lemma D.5. We proceed in the same way as the proof of Proposition D.1 except in this
case we will lower bound s(0)− s(t). We achieve this by letting ĩ be defined to grow slower than i,
so it is used as a lower bound. Define ĩ(t) such that ĩ(0) = i(0) and d̃i

dt = (βρ− γ)̃i, implying

ĩ(t) = i(0) exp{(βρ− γ)t}.

Since d̃i
dt ≤

di
dt when , ĩ(t) ≤ i(t) for all t < tρ2 . In addition, when t < tρ2 , s

N ≥
γ
β ≥ ρ. Then, for

t < tρ2 ,

ds

dt
= −β s

N
i ≤ −βρ̃i.

Hence we can write

s(t) ≤ s(0) +
∫ t

0
−βρ̃i(t′)dt′

= s(0)− βρi(0)
∫ t

0
exp{(βρ− γ)t′}dt′

= s(0)− βρi(0)
βρ− γ

(exp{(βρ− γ)t} − 1)

Since s(tρ) = ρN ,

ρN ≤ s(0)− βρi(0)
βρ− γ

(exp{(βρ− γ)tρ} − 1).

Solving for tρ results in

tρ ≤
log

(
βρ−γ
βρi(0)(s(0)− ρN) + 1

)
βρ− γ

≤ 1
βρ− γ

log
( ν2
i(0)N

)
where ν2 = 2(β−γ)

β , using the fact that ρ ≤ 1/2. �
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Proof of Proposition D.2. Using the results from Lemmas D.3-D.5,

tρ2 = tρ1 + (tρ2 − tρ1)

≤ 1
βρ1 − γ

log
( ν2
i(0)N

)
+ N(ρ1 − ρ2)

βρ2i(tρ1)

≤ 1
βρ1 − γ

log
( ν2
i(0)N

)
+ N(ρ1 − ρ2)

ρ2
ρ1
N(1− ρ1)(βρ1 − γ)− βρ2

2 c(0)

= 1
βρ1 − γ

log
( ν2
i(0)N

)
+ C

1− ρ1
,

where C = ρ1−ρ2
ρ2
ρ1

(βρ1−γ)−βρ2
2

c(0)
N(1−ρ1)

. Note that, as required in the statement, C = O(1). Indeed,

C = (ρ1 − ρ2)
ρ2
ρ1

(βρ1 − γ)− βρ2
2

c(0)
N(1−ρ1)

=
1− ρ2 − 1

log logN

βρ2 − γρ2
1− 1

log logN
− βρ2

2
c(0) log logN

N

,

and so, as N grows large, C tends to (1− ρ2)/ρ2(β − γ) (recall that c(0) = O(log logN)).
�

E. Datasets

Here we provide details on the datasets used in Section 5.

E.1. Amazon product reviews

For the Bass model, we use the Amazon product dataset of Ni et al. (2019), which contains product
reviews for Amazon products over more than twenty years. We take these reviews as a proxy for sales.
Products in Amazon’s electronics category typically have review trajectories well-approximated by
the Bass model, marked by slow initial adoption and a long tail of sales towards the end of the
product lifecycle – see Figure 4 for examples of such trajectories. For our experiments, we randomly
selected 100 products with over four years of reviews, and over 100 reviews by the fourth year.
Review counts are taken at a weekly granularity. Here we use Nmax = 1e5 – an order of magnitude
larger than any of the true product sales numbers in the dataset.

E.2. CDC ILINet influenza database

For the SIR model, we use the CDC’s ILINet database of patient visits for flu-like illnesses in the
United States, broken down by Department of Health and Human Services region. Each instance in
the dataset consists of weekly patient visits in a given region, over the course of one year. Each
year starts in September, at the low point of the flu season. We use data from 2010 through 2019
for each of 10 regions, for 100 instances total. As the dataset only includes cumulative infections
Ci[t], rather than observations of infection and recoveries Ii[t], Ri[t], we simulate these based on the
dynamics (11).

Here, we take γ = 0.24 as in Chowell et al. (2008), and a is assumed to be 0. We take Nmax to
be the total patient population (including for non-flu illnesses) in the dataset.
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Figure 4: Cumulative weekly product reviews for randomly selected products from our subset of the
Amazon dataset.

E.3. COVID-19 Datasets

For observed COVID-19 cases, we use publicly available case data from the ongoing COVID-19
epidemic provided by Dong et al. (2020). We aggregate data into sub-state regions, corresponding
broadly to public health service areas. The median state has seven regions. Here we take γ = 1/4.

The dataset contains static demographic covariates and time-varying mobility features that
affect the disease transmission rate. The dynamic covariates proxy mobility by estimating the daily
fraction of people staying at home relative to a region-specific benchmark of activity in early March
before social distancing measures were put in place. We also include a regional binary indicator of
the days when the fraction of people staying home exceeds the benchmark by 0.2 or more.

These data are provided by Safegraph, a data company that aggregates anonymized location
data from numerous applications in order to provide insights about physical places. To enhance
privacy, SafeGraph excludes census block group information if fewer than five devices visited an
establishment in a month from a given census block group. Documentation can be found at Saf
(2020).

The static covariates capture standard demographic features of a region that influence variation
in infection rates. These features fall into several categories:

• Fraction of individuals that live in close proximity or provide personal care to relatives in
other generations. These covariates are reported by age group by state from survey responses
conducted by UMi (2020).

• Family size from U.S. Census data, aggregated and cleaned by Cla (2020).

• Fraction of the population living in group quarters, including colleges, group homes, military
quarters, and nursing homes (U.S. Census via Cla (2020)).

• Population-weighted urban status (US Census via Cla (2020))

• Prevalence of comorbidities, such as cardiovascular disease and hypertension (CDC (2020a))
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• Measures of social vulnerability and poverty (U.S. Census via Cla (2020); CDC (2020b))

• Age, race and occupation distributions (U.S. Census via Cla (2020))

F. Detailed description of the COVID-19 model

F.1. Approximating the arrival process with latent state

Recall the stochastic SIR process, (S(t), I(t), R(t)) : t ≥ 0, a multi-variate counting process deter-
mined by parameters (N, β, γ). We now allow β to be time-varying, yielding a counting process
with jumps Ck − Ck−1 ∼ Bern {βSk−1/(βkSk−1 + γNI(t))}.

We obtain discrete-time diffusion processes, {(Si[t], Ii[t], Ri[t]) : t ∈ N} for instances i ∈ I by
considering the Euler-approximation to the stochastic diffusion process (3) (e.g. Jacod et al. (2005)).
Specifically, let ∆I[t] = I[t] − I[t − 1], and define ∆S[t] and ∆R[t] analogously. A discrete-time
approximation to the SIR process is then given by:

(29)
∆Si[t+ 1] = −βi[t](Si[t]/Ni)Ii[t] + νSi,t

∆Ii[t+ 1] = βi[t](Si[t]/Ni)Ii[t]− γIi[t] + νIi,t

∆Ri[t+ 1] = γIi[t] + νRi,t

where {νSi,t}, {νIi,t}, {νRi,t} are appropriately defined martingale difference sequences.
In the real world, the SIR model is a latent process – we never directly observe any of the state

variables Si[t], Ii[t], Ri[t]. Instead, we observe Ci[t] = Ii[t] +Ri[t] = Ni − Si[t]. The MLE problem
for parameters (N, β) is simply max(β,N)

∑
i,t logP (Ci[t]|β,N).

This is a difficult non-linear filtering problem (and an interesting direction for research). We
therefore consider an approximation: Denote by {(si[t], ii[t], ri[t]) : t ∈ N} the deterministic process
obtained by ignoring the martingale difference terms in the definition of the discrete time SIR process.
We consider the approximation Ci[t] = Ni − Si[t] ∼ (Ni − si[t])ωi[t], where ωi[t] is log-normally
distributed with mean 1 and variance exp(σ2)− 1.

Under this approximation, we have the log likelihood function

(30) log p(Ci[t]|N, β) = (logCi[t]− log (Ni − si[t]))2

F.2. Two-Stage Estimation of the SIR model

We parameterize our estimates of N as N̂i(φ, δ) = exp(φ>Zi + δi)Pi, where Zi are non-time-varying,
region-specific covariates, Pi is the population of region i, φ is a vector of fixed effects, and
δi ∼ N (0, σ2

δ ) are region-specific random effects.
Demographic and mobility factors also influence the reproduction rate of the disease. To

model these effects, we estimate βi[t] as a mixed effects model incorporating covariates βi[t] =
exp(Xi[t]>θ) + εi, where θ is a vector of fixed effects, and εi ∼ N (0, σ2

ε ) is a vector of random effects.
Given observations up to time T , we then estimate the model parameters (θ, φ, δ, ε) in two stages:
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1. Estimate the peak parameters φ̂, δ̂ via MLE, for the regions i ∈ P [t]:

φ̂, δ̂ = arg max
φ,δ

max
θ,ε

 ∑
i∈P [t]

∑
t∈[T ]

log p
(
Ci[t]

∣∣βi(θ, ε), N̂i(φ, δ)
)

+ log p(ε, δ)




where p is the likelihood defined in (30). We let δ̂i = 0 for i /∈ P [t].

2. Estimate the remaining parameters over all regions i ∈ I:

(31) θ̂, ε̂ = arg max
θ,ε

∑
i∈I

∑
t∈[T ]

log p
(
Ci[t]

∣∣βi(θ, ε), N̂i(φ̂, δ̂),
)

+ log p(ε, δ)


We note that (31) is differentiable with respect to the parameters (θ, ε, φ, δ), and we solve it (or

a weighted version) using Adam Kingma and Ba (2014).4

F.3. Performance relative to other models

To contextualize the quality of the Two-Stage model, we compare our analyzed models to the widely
used IHME model ihm (2020). We note that there exist comparable models that may serve as
stronger baselines; we include these results merely to demonstrate that the Two-Stage model yields
high-quality predictions, comparable to widely-cited models in the literature.

Figure 5 compares state-level5 WMAPE for MLE, Two-Stage and IHME models, for vintages
stretching back 28 days. The IHME model up to this date is, in effect, an SI model with carefully
tuned parameters. We report published IHME forecasts; 10 vintages of that model were reported
between April 21 and May 21. Two Stage dominates IHME across all model vintages.

10.0%
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Figure 5: WMAPE for predicting state-level cumulative cases on May 21, 2020, comparing MLE and
the Two-Stage approach against IHME.

4Adam was run for 20k iterations, with learning rate tuned over a coarse grid. A weighted version of the loss
function in (31) with weights for (i, t)th observation set to Ci[t] worked well.

5Due to IHME only providing state-level predictions. Additionally IHME only offers deaths predictions for these
vintages; we show WMAPE on deaths for IHME and WMAPE on infections for MLE and Two-Stage.
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